Synchronization Techniques for Burst-Mode Continuous Phase Modulation

Ph.D. Dissertation Defense Ehsan Hosseini

Department of Electrical Engineering & Computer Science University of Kansas

Outline

- Chapter 1: Introduction
- Chapter 2: The Cramér-Rao Bound for Training
 Sequence Design for Burst-Mode CPM
- Chapter 3: *Timing, Carrier and Frame Synchronization* for Burst-Mode CPM
- Chapter 4: Applications to SOQPSK
- Chapter 5: Conclusions

External Contributions

• Chapter 1: Introduction

Motivation: Aeronautical Telemetry

- integrated Network Enhanced Telemetry (iNET) project
 - <u>Packet-based telemetry</u> in contrast to streaming telemetry.
 - Benefits: spectrum conservation, multi-hop, enhanced mobility,...
 - A major challenge in the RF link is detection and <u>synchronization</u> of packets, i.e. *bursts*
 - Physical layer waveform: SOQPSK, a subset of <u>CPM</u>
- In this work:
 - 1. Synchronization for general CPM in burst-mode TX
 - 2. Apply the results to SOQPSK, i.e. iNET standard

KUU INFORMATION & TELECOMMUNICATION TECHNOLOGY CENTER The University of Kansas

What is CPM?

• Continuous phase modulation:

$$s(t; \alpha) = \sqrt{\frac{E_s}{T_s}} \exp\left\{2\pi h \sum_i \alpha_i q(t - iT_s)\right\} \longleftrightarrow h: \text{ modulation index}$$

- Frequency pulse:
 - $g(t) = \frac{dq(t)}{dt}$
 - Duration of LT_s
- Properties:
 - Constant envelope
 - Bandwidth efficient
 - Drawback: complex at Rx

Signal Transmission Model

• Burst-Mode Transmission:

- Burst Structure:
 - Preamble (training sequence): sequence of L_0 known symbols
 - Unique Word (UW): burst identification
 - Payload: information bits
- Received baseband signal:

$$r(t) = e^{j(2\pi f_d t + \theta)} s(t - \tau) + w(t)$$

• Noise model: AWGN

 f_d : Frequency offset θ : Carrier phase τ : time delay

Synchronization Parameters (Unknown)

Synchronization Problem

- Challenge: Acquisition time must be kept minimum in burst-mode communications to save bandwidth, thus:
 - 1. Feedforward approach for shorter acquisition time
 - 2. Data-aided (DA) algorithms to assist synchronization

- <u>Problems</u>:
 - 1. Preamble design: What is the best preamble?
 - 2. Timing & carrier recovery: Estimation of $[f_d, \theta, \tau]$
 - 3. Frame synchronization: Detection of preamble boundaries

Comparison with Related Works

The Cramér-Rao Bound for Training Sequence Design for Burst-Mode CPM

Optimum Training Sequence Design: Cramér-Rao Bound Method

- Two approaches can be taken in order to derive the optimum (best) training sequence for estimation of $\mathbf{u} = [f_d, \theta, \tau]^T$
 - 1. Minimize the estimation error variance:

$$\boldsymbol{\alpha}_{opt} = \arg\min_{\boldsymbol{\alpha}} E\left[(\hat{u}_i - u_i)^2 \mid \boldsymbol{\alpha} \right]$$

2. Minimize the CRB, i.e. a theoretical lower bound on estimation error variance of *any unbiased estimator*.

$$\mathsf{MSE} \longrightarrow E\left[(\hat{u}_i - u_i)^2 \mid \boldsymbol{\alpha}\right] \ge \mathrm{CRB}(u_i \mid \boldsymbol{\alpha}) \Longrightarrow \boldsymbol{\alpha}_{\mathrm{opt}} = \arg\min_{\boldsymbol{\alpha}} \{\mathrm{CRB}(u_i \mid \boldsymbol{\alpha})\}$$

CRB is computed via

Overview of CRB Calculations

Closed-form FIM for CPM and joint estimation

$$\mathbf{I}(\mathbf{u}) = \frac{1}{T_s} \left(\frac{E_s}{N_0}\right) \begin{bmatrix} 8\pi^2 T_0^3 / 3 & 2\pi T_0^2 & -8\pi^2 hA \\ 2\pi T_0^2 & 2T_0 & -2\pi hB \\ -8\pi^2 hA & -2\pi hB & 8\pi^2 h^2C \end{bmatrix}$$

• It is shown the optimum training sequence must satisfy these two conditions at the same time

1.
$$A' = B' = 0$$

 $A' = \sum_{i=1}^{L_0} i \alpha_{i-1} = 0$
 $B' = \sum_{i=1}^{L_0} \alpha_{i-1} = 0$

2. Maximize C

$$C \approx R_g(0) \sum_{i=0}^{L_0-1} \alpha_i^2 + 2R_g(T_s) \sum_{i=0}^{L_0-2} \alpha_i a_{i+1} \text{ where } R_g(t) = \int_{-\infty}^{+\infty} g(u)g(u+t)du$$

Proposed Optimum Training Sequence

• Proposed sequence based on our analysis

- It satisfies A'=B'=0,
 - 1. Optimum sequence for full-response CPM.
 - 2. Only 2 transitions => *Near-optimum* sequence for partial-response CPM

$$(1)A' = \sum_{i=1}^{L_0} i\alpha_{i-1} = 0 \quad (2)B' = \sum_{i=1}^{L_0} \alpha_{i-1} = 0$$
(3) Maximize $C \approx R_g(0) \sum_{i=0}^{L_0-1} \alpha_i^2 + (2R_g(T_s) \sum_{i=0}^{L_0-1} \alpha_i a_{i+1}) = 0$ for full-response CPM

• We can reduce the approximations for <u>partial-response</u> by using $L_1 = L_0 - \lfloor L/2 \rfloor$ rather than L_0 to reduce the *edge-effect* (EF)

Findings and Properties of the Optimum Sequence

- 1. The same sequence is optimum for frequency, phase, and timing, which is opposed to linear modulations.
- 2. It follows the same pattern for all CPMs.
- 3. The minimized frequency and phase CRBs are *independent* of underlying CPM parameters.
- 4. The minimized symbol timing CRB do depend on CPM parameters such as frequency pulse.
- 5. It *decouples* symbol timing estimation from phase and frequency offset estimates.

$$\mathbf{I}^{*}(\mathbf{u}) = \frac{1}{T_{s}} \left(\frac{E_{s}}{N_{0}} \right) \begin{bmatrix} 8\pi^{2}T_{0}^{3}/3 & 2\pi T_{0}^{2} & 0 \\ 2\pi T_{0}^{2} & 2T_{0} & 0 \\ 0 & 0 & 8\pi^{2}h^{2}C^{*} \end{bmatrix} \qquad \begin{array}{c} u_{1} : \text{frequency} \\ u_{2} : \text{phase} \\ u_{3} : \text{timing} \end{array}$$

More Findings

6. The proposed sequence is *asymptotically* optimum for partialresponse CPMs

- 7. Computer search confirms the proposed sequence at small L_0
- 8. We also computed CRB for random sequences and compared with the optimum one:
 - The optimum sequence delivers significant gain for symbol timing estimation of partial-response and/or M-ary CPMs.
 - The frequency and phase estimation are less sensitive to the selection of training sequence especially for long sequences.

Timing, Carrier, and Frame Synchronization of Burst-Mode CPM

Timing and Carrier Recovery Framework

- Received Signal: $r(t) = e^{j(2\pi f_d t + \theta)} s(t \tau) + w(t)$
- Decompose timing delay:

$$\tau = \mu T_s + \varepsilon T_s \quad \text{where } \begin{cases} \mu \ge 0 : \text{ integer delay} \\ -0.5 < \varepsilon < 0.5 : \text{ fractional delay} \end{cases}$$

- For timing and carrier recovery, we assume integer delay is known
- Joint maximum likelihood (ML) estimator:

$$\left[\hat{f}_{d},\hat{\theta},\hat{\varepsilon}\right] = \underset{\left[f_{d},\theta,\varepsilon\right]}{\operatorname{arg\,max}} \left\{ \Lambda\left[r(t);f_{d},\theta,\varepsilon\right] = \operatorname{Re}\left[\int_{\varepsilon T_{s}}^{T_{0}+\varepsilon T_{s}} e^{-j(2\pi f_{d}t+\theta)}r(t)s^{*}(t-\varepsilon T_{s})dt\right] \right\}$$

- f_d and ε are embedded inside the above integral \rightarrow It requires a 2-dimensional grid search
- **Objective**: decouple timing and frequency in the LLF

The Trick: Piecewise Linear Approximation

• Phase response of the optimum sequence

- Similar and consequent symbols cause the phase to increase/decrease uniformly
- We use linear approximation of the phase in each segment
- There is a lag for partial-response CPMs $\rightarrow T_l$

Approximated Log-Likelihood Function (LLF)

• Discrete-time LLF:

$$\Lambda(\mathbf{r};\nu,\theta,\varepsilon) \approx \operatorname{Re}\left[\sum_{n=0}^{NL_0-1} e^{-j(2\pi n\nu+\theta)} r[n] s_{\varepsilon}^*[n]\right]$$

v: normalized freq. offset ϵ : fractional delay $s_{\epsilon}[n]$:baseband signal shifted by ϵ

• Approximated baseband signal:

will be used in the above LLF

Maximization of the LLF

• Our approximation <u>decouples</u> timing and frequency offsets:

$$\Lambda^{*}(\mathbf{r};\nu,\theta,\varepsilon) \approx \operatorname{Re}\left\{e^{-j\theta}\left[e^{-j(M-1)\pi\hbar\varepsilon}\lambda_{1}(\nu)+e^{j(M-1)\pi\hbar\varepsilon}\lambda_{2}(\nu)\right]\right\}$$

Functions of **r**

- The maximization of the LLF becomes straightforward:
 - Step 1: Frequency offset estimation:

$$\hat{\nu} = \arg \max_{\widetilde{\nu}} \{ |\lambda_1(\widetilde{\nu})| + |\lambda_2(\widetilde{\nu})| \} \longrightarrow \text{Grid search}$$

• Step 2: symbol timing estimation:

$$\hat{\varepsilon} = \frac{\arg\left\{\lambda_1(\hat{v})\lambda_2^*(\hat{v})\right\}}{2(M-1)\pi h}$$

Step 3: carrier phase estimation:

$$\hat{\theta} = \arg\{e^{-j(M-1)\pi\hbar\hat{\varepsilon}}\lambda_1(\hat{\nu}) + e^{j(M-1)\pi\hbar\hat{\varepsilon}}\lambda_2(\hat{\nu})\}$$

Implementation of Frequency Estimator

• The received *r*[*n*] is *pre-processed*

$$r_{1}[n] = \begin{cases} r[n] & 0 \le n < NL_{0} / 4 \\ \exp[-j(M-1)\pi hL_{0}]r[n] & 3NL_{0} / 4 \le n < NL_{0} \\ 0 & \text{otherwise} \end{cases} r_{2}[n] = \begin{cases} \exp[j(M-1)\pi hL_{0} / 2]r[n] & NL_{0} / 4 \le n < 3NL_{0} / 4 \\ 0 & \text{otherwise} \end{cases}$$

• $\lambda_1(v)$ and $\lambda_2(v)$ are computed using FFT operations:

$$\lambda_{1}(\nu) = \sum_{n=0}^{NL_{0}-1} r_{1}[n] e^{j(M-1)\pi hn/N} e^{-j2\pi n\nu} \qquad \lambda_{2}(\nu)$$

$$\lambda_2(\nu) = \sum_{n=0}^{NL_0 - 1} r_2[n] e^{-j(M-1)\pi hn/N} e^{-j2\pi n\nu}$$

- The precision can be increased via:
 - 1. Zero padding prior the FFTs $\rightarrow K_f$
 - 2. Interpolation of FFT results

Joint ML Estimator Block Diagram

Estimator's Performance: Frequency and Phase Offsets

- Similar performance for different CPM schemes with $L_0=64$
- Within 0.5 dB of CRB at low to medium SNRs

Estimator's Performance: Timing Offset

- The error variance <u>attains</u> the CRB for various CPMs.
- Exception: 1RC due to large deviations from our *template signal*.

Frame Synchronization:

Overview

- Prior to Timing and Carrier recovery we must determine preamble boundaries, i.e. start-of-signal (SoS), in 2 steps:
 - 1. <u>SoS detection algorithm</u>: Detects the arrival of a new burst and *tentative* location of the SoS

2. <u>SoS estimation algorithm</u>: Estimates the exact location of SoS within an observation window

SoS Estimation Algorithm

• Apply ML estimation rules to the observation window

$$p(\mathbf{r}; \delta, \nu, \theta, \mathbf{a}_{d}) = \frac{1}{(\pi\sigma^{2})^{N_{w}}} \exp\left(-\frac{1}{\sigma^{2}} \sum_{n=0}^{\delta-1} |r[n]|^{2}\right) \exp\left(-\frac{1}{\sigma^{2}} \sum_{n=\delta}^{N_{w}-1} |r[n] - s[n-\delta]e^{j(2\pi\nu n+\theta)}|^{2}\right)$$

• Unwanted parameters, [v, θ, a_d], are averaged out

$$p(\mathbf{r};\delta) \approx C(\delta) \left(\sum_{n=\delta}^{N_w - 1} |r[n]|^2 + 2\sum_{d=1}^{N_p - 1} |\sum_{n=\delta}^{N_p - 1} r^*[n]r[n+d]s[n-\delta]s^*[n+d-\delta] + R_{ss}(d) \sum_{n=N_p + \delta}^{N_w - d - 1} r^*[n]r[n+d] \right)$$

- Find δ for which the likelihood function is maximized

$$\hat{\delta} = \arg\max_{\delta} C(\delta) \left(\sum_{n=\delta}^{N_w - 1} |r[n]|^2 + 2\sum_{d=1}^{D} \left| \sum_{n=\delta}^{N_p + \delta - d - 1} r^*[n]r[n+d]s[n-\delta]s^*[n+d-\delta] + R_{ss}(d) \sum_{n=N_p + \delta}^{N_w - d - 1} r^*[n]r[n+d] \right| \right)$$

$$C(\delta) = (N_w - \delta)^q \quad q > 0 : \text{optimized via simulations} \qquad 1 \le D < N_p : \text{Complexity factor}$$

SoS Detection Algorithm

• We apply a simple likelihood ratio test (LRT)

$$L(\mathbf{r}_p) = \frac{p(\mathbf{r}_p; H_1)}{p(\mathbf{r}_p; H_0)} \underset{H_0}{\overset{K_1}{\geq} \gamma}$$

- \mathbf{r}_p : vector of N_p samples H_0 : No preamble H_1 : Fully - aligned preamble γ : Test threshold
- Using the same techniques as SoS estimator, the LRT becomes

$$L_{D'}(\mathbf{r}_{p}) = \sum_{d=1}^{D'} \left| \sum_{n=0}^{N_{p}-d-1} r^{*}[n]r[n+d]s[n]s^{*}[n+d] \right| \stackrel{H_{1}}{\underset{H_{0}}{\gtrless}} \gamma_{D'}$$

- $1 \le D' < N_p$: determines complexity
- $\mathcal{Y}_{D'}$: test threshold; selected for a given *probability of false alarm* (Neyman-Pearson criterion).
- **ROC**: $P_{FA} = \Pr\{L_{D'}(r_p) > \gamma_{D'} \mid H_0\}$ vs. $P_D = 1 \Pr\{L_{D'}(r_p) < \gamma_{D'} \mid H_1\}$
- The LRT is performed using a <u>sliding</u> window.

Frame Synchronization Performance

- Probabilities are computed via simulations
- Probability of false lock: $P_{FL} = \Pr\{\hat{\delta} \neq \delta\}$

Putting Everything Together: Simulating a Burst-Mode CPM Receiver

- Transmit bursts of optimum preamble (L_0) + 4096 information bits
- Apply AWGN + random frequency, phase and timing offsets
- Receiver's structure:

- Design parameters:
 - $N=2, K_f=2$, Gaussian interpolator
 - $D=D'=4, N_w = 2NL_0$
 - $\gamma_{D'}$ optimized for each scenario using simulations

Bit Error Rate (BER) Performance

• A preamble of 64 bits performs within 0.1 dB of the ideal synchronization

Applications to SOQPSK (iNET)

What is SOQPSK?

• An OQSPK-like modulation, which has a CPM representation

$$a_n \in \{-1,1\}$$
Precoder
$$\alpha_n \in \{-1,0,1\}$$
CPM
$$s(t)$$
Modulator

- The precoder increases spectral efficiency of SOQPSK compared to a binary CPM by imposing:
 - $\alpha_{n-1} = 1$ cannot be followed by $\alpha_n = -1$ and vice versa
- Partial-response SOQPSK-TG is adopted by the iNET standard

iNET Synchronization Preamble

- Length of L_0 =128 bits
- Periodic and consists of repeating a sequence of 16 bits 8 times as

$$a_{2k} = 1,0,1,0,1,0,1,0$$

 $a_{2k+1} = 1,0,1,1,0,1,0,0$ for $k = 0,...,7$

• One period in terms of <u>ternary symbols</u>

Burst-Mode Synchronization of SOQSPK-TG: iNET Preamble

- We apply our CPM techniques to SOQPSK by considering ternary symbols
- iNET preamble phase response

- SOQPSK-TG's response is approximated by SOQPSK-MIL's
- Derivation of joint ML estimation algorithm is similar to the CPM's when *h*=1/2 and *M*=2

Estimation Error Variances for SOQPSK: Optimum vs. iNET preambles

- Performance degradation due to transitions in the iNET preamble
- Phase error variance has the same behavior as the frequency's

Overall Performance of SOQPSK: Optimum vs. iNET preambles

- iNET preamble performs very close to the optimum one when $L_0=128$
- The optimum preamble with $L_0 = 64$ is within 0.2 dB of the iNET's
- False locks for $L_0 = 32$ at low SNRs

Conclusions

- Gave an overview of feedforwad synchronization methods for CPM
- Derived the optimum training sequence for CPM in AWGN
 - Minimizes the CRBs for all three synchronization parameters
 - Applicable to the entire CPM family including M-ary and partial response
- Developed a joint ML DA estimation algorithm for timing and carrier recovery
 - Designed based on the optimized training sequence
 - Performs within 0.5 dB of the CRB at SNRs as low as 0 dB for $L_0 = 64$
- Simulated a burst-mode CPM receiver: only 0.1 dB SNR loss with the optimum preamble of L_0 =64
- Applied CPM results to SOQSPK for iNET standard
- **Final result**: developed a <u>complete</u> feedforward DA synchronization scheme for <u>general</u> CPM including: best training sequence, timing and carrier recovery, and frame synchronization

Areas of Future Study

- Application to frequency-selective channels:
 - Training sequence design
 - Timing and carrier recovery
 - Frame synchronization
- Joint synchronization and channel estimation
- Analysis of frame synchronization algorithm as it can be applied to other modulations,
 - Probability of false lock (SoS estimator)
 - Probabilities of false alarm and detection (SoS detector)
- Hardware implementation and trade-offs between complexity and performance

Questions?

Derivation of CRB

• FIM, for CPM and AWGN, is computed via

$$\mathbf{I}_{i,j}(\mathbf{u}) = -\frac{2}{N_0} \int_0^{T_0} \operatorname{Re}\left[s(t,\mathbf{u},\boldsymbol{\alpha}) \frac{\partial^2 s^*(t,\mathbf{u},\boldsymbol{\alpha})}{\partial u_i \partial u_j}\right] dt \qquad \qquad \underbrace{s(t,\mathbf{u},\boldsymbol{\alpha}) = \sqrt{\frac{E_s}{T_s}} e^{j(2\pi f_d t + \theta)} e^{j\phi(t-\tau;\boldsymbol{\alpha})}}_{\text{Received Preamble w/o noise}}$$

Closed-form FIM for CPM and joint estimation:

$$\mathbf{I}(\mathbf{u}) = \frac{1}{T_s} \left(\frac{E_s}{N_0}\right) \begin{bmatrix} 8\pi^2 T_0^3 / 3 & 2\pi T_0^2 & -8\pi^2 hA \\ 2\pi T_0^2 & 2T_0 & -2\pi hB \\ -8\pi^2 hA & -2\pi hB & 8\pi^2 h^2 C \end{bmatrix} \qquad A = \sum_{i=0}^{L_0 - 1} \alpha_i \int_0^{T_0} g(t - iT_s - \tau) dt \\ B = \sum_{i=0}^{L_0 - 1} \alpha_i \int_0^{T_0} g(t - iT_s - \tau) dt \\ C = \sum_{i=0}^{L_0 - 1} \sum_{j=0}^{L_0 - 1} \alpha_i \alpha_j \int_0^{T_0} g(t - iT_s - \tau) g(t - jT_s - \tau) dt \\ g(t) : \text{CPM Frequency Pulse}$$

Training Sequence for Symbol Timing

• Symbol Timing CRB should be *minimized*,

$$CRB(\tau \mid \boldsymbol{\alpha}) = \left(8\pi^{2}h^{2}C - \left[-8\pi^{2}hA - 2\pi hB \right] \begin{bmatrix} \mathbf{I}_{11} & \mathbf{I}_{12} \\ \mathbf{I}_{21} & \mathbf{I}_{22} \end{bmatrix}^{-1} \begin{bmatrix} -8\pi^{2}hA \\ -2\pi hB \end{bmatrix} \right)^{-1}$$

Ouadratic form : $\mathbf{v}^{\mathrm{T}}\mathbf{J}\mathbf{v} \ge 0$

- The CRB's denominator should be *maximized*, or, simultaneously
 - 1. Maximize C
 - 2. Minimize the quadratic form: J is positive-definite $\Rightarrow \mathbf{v}^T \mathbf{J} \mathbf{v} \ge 0 \Rightarrow$ It is minimized for $\mathbf{v} = \mathbf{0} \Rightarrow A = B = 0$
- Assuming C is independent of (A,B): $\alpha_{opt} = \arg \max C$ subject to A = B = 0
- In practice, $C \approx R_g(0) \sum_{i=0}^{L_0-1} \alpha_i^2 + 2R_g(T_s) \sum_{i=0}^{L_0-1} \alpha_i a_{i+1}$
 - 1. Full-response CPM: $R_g(T_s) = 0 \Rightarrow C = \text{const.} \Rightarrow A = B = 0$ is sufficient.
 - 2. Partial-response CPM: $R_g(T_s) > 0 \Rightarrow \text{maximize} \sum_{i=0}^{L_0-2} \alpha_i \alpha_{i+1} \text{ AND } A = B = 0.$

Proposing the training sequence

• A=B=0 is satisfied when:

$$A' = \sum_{i=1}^{L_0} i \alpha_{i-1} = 0$$
 AND $B' = \sum_{i=1}^{L_0} \alpha_{i-1} = 0$

- *C* is maximized when $\sum_{i=0}^{L_0-2} \alpha_i \alpha_{i+1}$ is maximized or *sign transitions* are minimized in the sequence.
- We propose the following <u>binary</u> sequence:

- It satisfies A'=B'=0,
 - 1. Optimum sequence for full-response CPM.
 - 2. Only 2 transitions => *Near-optimum* sequence for partial-response CPM.

Generalization of the Proposed Sequence

- We can reduce the approximations for <u>partial-response</u> by using $L_1 = L_0 \lfloor L/2 \rfloor$ rather than L_0 to reduce the *edge-effect* (EF)
- <u>M-ary CPM</u>: $C \propto \alpha_i^2 \Rightarrow \text{Set } \alpha_i$'s to maximum value in the constellation
- Frequency and Phase CRBs:

$$\operatorname{CRB}(f_{d} \mid \boldsymbol{\alpha}) = \frac{3}{2\pi^{2}L_{0}^{3}} \times \frac{CL_{0} - B^{2}/4}{CL_{0} - B^{2}/4 - \underbrace{\frac{3}{4L_{0}^{2}}(BL_{0} - 4A)^{2}}_{\lambda_{2}}} \ge \frac{3}{2\pi^{2}L_{0}^{3}} \qquad \operatorname{CRB}(\theta \mid \boldsymbol{\alpha}) = \frac{2}{L_{0}} \times \frac{CL_{0}^{3} - 3A^{2}}{CL_{0}^{3} - 3A^{2} - \underbrace{(BL_{0} - 3A)^{2}}_{\lambda_{1}}} \ge \frac{2}{L_{0}}$$

⇐ Equalities hold, if $\lambda_1 = \lambda_2 = 0$ or $A = B = 0 \rightarrow Proposed$ sequence for symbol timing.

• Approximations:

	Frequency	Phase	Timing
Full-response	Exact	Exact	Exact
Partial-response	EF	EF	C and EF

Proposed Training Sequence and its Approximations

• We propose the following sequence for *general* CPM and *all* synchronization parameters:

- EF is reduced as the sequence length is increased
- Approximations on *C* for partial-response CPM and symbol timing:

$$\frac{\operatorname{CRB}(\widetilde{\boldsymbol{\alpha}} \mid \tau)}{\operatorname{CRB}(\boldsymbol{\alpha}^* \mid \tau)} = \frac{\widetilde{C} - 8R_g(T_s)}{\widetilde{C}} = 1 - \frac{8R_g(T_s)}{L_0R_g(0) + 2(L_0 - 1)R_g(T_s)} \longrightarrow 1 \quad \frac{\widetilde{\boldsymbol{\alpha}} : \text{Hypothetical sequence}}{\boldsymbol{\alpha}^* : \text{Proposed sequence}}$$

• The proposed sequence is asymptotically optimum

Computer Search for the Optimum Sequence: Genetic Algorithm (GA)

• The ratio of the minimum CRB found via GA to the proposed sequence CRB:

• The GA is unable to find a better sequence than the proposed one even at short to moderate lengths

Random vs. Optimum Sequences: Symbol Timing Estimation

True CRB vs. Opt. CRB for L=32 Comparison of estimator performance for "unknown and random" with "known and optimum" training sequences.

UCRB vs. Opt. CRB

Comparison of estimator performance for "known but randomly selected" with "known and optimum" training sequences.

Random vs. Optimum Sequences: **Frequency and Phase Estimation**

UCRB vs. Optimum CRB ٠ 0.8 0.8 - GMSK (BT=0.3) 0.7 0.7 - 1REC (M=2,h=1/2) 1RC (M=2,h=1/2) 0.6

Frequency and phase estimation are less sensitive to the ۲ selection of training sequence

Derivation of CRB

• <u>Assumption</u>: Joint estimation of $\mathbf{u} = [f_d, \theta, \tau]^T$ in AWGN,

$$r(t) = \sqrt{\frac{E_s}{T_s}} e^{j(2\pi f_d + \theta)} e^{j\phi(t-\tau, \alpha)} + w(t)$$

• The FIM elements:

$$\mathbf{I}(\mathbf{u})_{i,j} = \frac{2}{N_0} \int_0^{T_0} \operatorname{Re}\left[\frac{\partial s(t,\mathbf{u})}{\partial u_i} \frac{\partial s^*(t,\mathbf{u})}{\partial u_j}\right] dt$$

- Observation interval: $T_0 = L_0 T_s$ or L_0 symbols
- Computation of three partial derivatives:

$$\frac{\partial s(t,\mathbf{u})}{\partial f_d} = j2\pi t s(t,\mathbf{u}), \quad \frac{\partial s(t,\mathbf{u})}{\partial \theta} = j s(t,\mathbf{u}), \quad \frac{\partial s(t,\mathbf{u})}{\partial \tau} = j \frac{\partial \phi(t-\tau;\alpha)}{\partial \tau} s(t,\mathbf{u})$$

- Note for CPM: $s(t, \mathbf{u})s^*(t, \mathbf{u}) = 1$
- Frequency pulse: $\frac{\partial \phi(t-\tau; \alpha)}{\partial \tau} = -\sum_{i=0}^{L_0-1} \pi \alpha_i g(t-iT_s-\tau)$ where $g(t) = \partial q(t)/\partial t \rightarrow$ Frequency Pulse

Derivation of CRB More Simplifications

• *A*, *B*, and *C* relate CRBs to frequency pulse and data symbols. They are approximated as,

$$A \approx \sum_{i=0}^{L_0 - 1} \alpha_i \left(\Gamma + i \frac{T_s}{2} \right) \text{ where } \Gamma = \int_0^{L_s} ug(u) du \qquad B \approx \frac{1}{2} \sum_{i=0}^{L_0 - 1} \alpha_i$$
$$C \approx \sum_{i=0}^{L_0 - 1} \sum_{j=0}^{L_0 - 1} \alpha_i \alpha_j R_g((i - j)T_s) \text{ where } R_g(t) = \int_{-\infty}^\infty g(u)g(u + t) du$$

- Edge-effect: $L_1 = L_0 \lfloor L/2 \rfloor$ for partial-response CPM
- Correlation function of g(t):

$$R_g(nT_s) \approx 0 \text{ for } n > 1 \Longrightarrow C \approx R_g(0) \sum_{i=0}^{L_0^{-1}} \alpha_i^2 + 2R_g(T_s) \sum_{i=0}^{L_0^{-1}} \alpha_i a_{i+1}$$

Pulse Shape	2REC	3REC	2RC	3RC	GMSK
$R_g(0)$	0.125	0.0833	0.1875	0.125	0.1327
 $\underline{R_g(\pm T_s)}$	0.0625	0.0556	0.0312	0.0589	0.0551
$R_g(\pm 2T_s)$	0	0.0278	0	0.0036	0.0036

Exhaustive Computer Search for CPM

• <u>Exact</u> computer exhaustive search vs. <u>approximated</u> proposed sequence:

Length = 16, Binary CPM

CRB for Random Sequences

- Comparison of the optimum sequence and a random sequence
- True CRB:
 - 1. The likelihood function is averaged over α
 - 2. Only feasible for MSK-type CPMs, i.e. binary, h=1/2, and full-response

$$\mathbf{I}(\mathbf{u})_{k,l} = \left(\frac{2E_s}{N_0}\right)^2 \sum_{i=0}^{L_0-1} \sum_{j=0}^{L_0-1} E\left\{\frac{\partial \hat{a}_i}{\partial u_k} \frac{\partial \hat{a}_j}{\partial u_l} \tanh\left(\frac{2E_s}{N_0} \hat{a}_i\right) \tanh\left(\frac{2E_s}{N_0} \hat{a}_j\right)\right\}$$

- 3. The above expectation is computed via simulations
- Unconditional CRB (UCRB):
 - 1. Conditional CRB is averaged over α .

$$E_{\mathbf{r}\mid\boldsymbol{\alpha}}\left[\left(\hat{\tau}-\tau\right)^{2}\right] \geq \operatorname{CRB}\left(\tau\mid\boldsymbol{\alpha}\right) \xrightarrow{\operatorname{Averaging over }\boldsymbol{\alpha}} E_{\mathbf{r}}\left[\left(\hat{\tau}-\tau\right)^{2}\right] \geq E_{\boldsymbol{\alpha}}\left[\operatorname{CRB}\left(\tau\mid\boldsymbol{\alpha}\right)\right] = \operatorname{UCRB}(\tau)$$

2. A closed-form expression was found for symbol timing

CRB for Random Data Sequence: True CRB

- NDA estimators with random (unknown) data sequence:
 - Computation of *true* CRB, as a nuisance parameter.
 - Quite complex; may not be feasible for general CPM.
- Special case: binary, h=1/2 and full-response:

1. PAM representation:

$$s(t) = \sum_{i} a_{i}c_{0}(t-iT_{s}) \xrightarrow{\text{Receiver}} \widetilde{a}_{n} = \begin{cases} \int_{2T_{s}} \operatorname{Re}\left[e^{-j(2\pi f_{d}t+\theta)}r(t)c_{0}(t-nT_{s}-\tau)\right]dt & n-\text{even} \\ \int_{2T_{s}} \operatorname{Im}\left[e^{-j(2\pi f_{d}t+\theta)}r(t)c_{0}(t-nT_{s}-\tau)\right]dt & n-\text{odd} \end{cases}$$

- 2. *a*_i's *pseudo symbols*: independent Gaussian RVs.
- 3. Averaging LF over a_i 's + partial derivatives \rightarrow FIM elements:

$$\mathbf{I}(\mathbf{u})_{k,l} = \left(\frac{2E_s}{N_0}\right)^2 \sum_{i=0}^{L_0-1} \sum_{j=0}^{L_0-1} E\left\{\frac{\partial \widetilde{a}_i}{\partial u_k} \frac{\partial \widetilde{a}_j}{\partial u_l} \tanh\left(\frac{2E_s}{N_0}\widetilde{a}_i\right) \tanh\left(\frac{2E_s}{N_0}\widetilde{a}_j\right)\right\}$$

4. Monte-Carlo simulations \rightarrow CRBs.

CRB for Random Data Sequence: Unconditional CRB (UCRB)

• Averaging the conditional CRB w.r.t the training sequence results in *unconditional* lower bound on the MSE:

$$E_{\mathbf{r}|\boldsymbol{\alpha}}\left[\left(\hat{\tau}-\tau\right)^{2}\right] \geq \operatorname{CRB}\left(\tau \mid \boldsymbol{\alpha}\right) \xrightarrow{\operatorname{Averagingover}\boldsymbol{\alpha}} E_{\mathbf{r}}\left[\left(\hat{\tau}-\tau\right)^{2}\right] \geq E_{\boldsymbol{\alpha}}\left[\operatorname{CRB}\left(\tau \mid \boldsymbol{\alpha}\right)\right] = \operatorname{UCRB}(\tau)$$

• Symbol timing CRB can be expressed as:

$$\mathrm{CRB}(\tau|\boldsymbol{\alpha}) = \frac{T_s}{E_s/N_0} \frac{1}{\boldsymbol{\alpha}^T \mathbf{G} \boldsymbol{\alpha} - \boldsymbol{\alpha}^T \mathbf{D} \mathbf{J} \mathbf{D}^T \boldsymbol{\alpha}} = \frac{T_s}{E_s/N_0} \frac{1}{\boldsymbol{\alpha}^T \mathbf{Q} \boldsymbol{\alpha}}$$

• Where:

$$\mathbf{G} = 8\pi^{2}h^{2} \begin{bmatrix} R_{g}(0) & R_{g}(T_{s}) & \dots & R_{g}((L_{0}-1)T_{s}) \\ R_{g}(-T_{s}) & R_{g}(0) & R_{g}(T_{s}) & \dots \\ \vdots & \vdots & \ddots & \dots \\ R_{g}((1-L_{0})T_{s}) & \dots & R_{g}(-T_{s}) & R_{g}(0) \end{bmatrix} \mathbf{D} = \begin{bmatrix} -8\pi^{2}h(\Gamma+\tau/2) & -\pi h \\ -8\pi^{2}h(\Gamma+\tau/2+T_{s}/2) & -\pi h \\ \vdots & \vdots \\ -8\pi^{2}h(\Gamma+\tau/2+(L_{0}-1)T_{s}/2) & -\pi h \end{bmatrix} \mathbf{J} = \begin{bmatrix} \mathbf{I}_{11} & \mathbf{I}_{12} \\ \mathbf{I}_{21} & \mathbf{I}_{22} \end{bmatrix}^{-1}$$

• Thus:

$$\text{UCRB}(\tau \mid \boldsymbol{\alpha}) = \frac{T_s}{E_s / N_0} E_{\boldsymbol{\alpha}} \left[\frac{1}{\boldsymbol{\alpha}^T \mathbf{Q} \boldsymbol{\alpha}} \right] \rightarrow \begin{cases} \text{Numerical} \\ \text{Simplify} \end{cases}$$

Computing Timing UCRB

- Define: $Z = \boldsymbol{\alpha}^T \mathbf{Q} \boldsymbol{\alpha}$
- Approximation via Taylor series:

UCRB
$$(\tau) = \frac{T_s}{E_s / N_0} E\left[\frac{1}{Z}\right] \approx \frac{T_s}{E_s / N_0} \frac{E[Z^2]}{E[Z]^3}$$

• Eigen-decomposition of Q:

$$Z = \boldsymbol{\alpha}^T (\mathbf{V}^T \boldsymbol{\Lambda} \mathbf{V}) \boldsymbol{\alpha} = \mathbf{x}^T \boldsymbol{\Lambda} \mathbf{x} = \sum_{i=1}^{L_0} \lambda_i X_i^2 \qquad \mathbf{x} = \mathbf{V}^T \boldsymbol{\alpha} = [X_1, X_2, \cdots, X_{L_0}]^T$$

• Expected value of Z

$$E\{Z\} = \sum_{i=1}^{L_0} \lambda_i E\{X_i^2\} = \sum_{i=1}^{L_0} \lambda_i \mathbf{v_i}^T E\{\alpha \alpha^T\} \mathbf{v_i} = \frac{M^2 - 1}{3} \sum_{i=1}^{L_0} \lambda_i$$

• Using the same approach and employing central limit theorem:

$$E\{Z^2\} \approx \frac{(M^2 - 1)^2}{9} \left[\sum_i \lambda_i\right]^2 + \frac{2(M^2 - 1)^2}{9} \sum_i \lambda_i^2 = \frac{(M^2 - 1)^2}{9} \text{trace}(\mathbf{Q})^2 + \frac{2(M^2 - 1)^2}{9} \text{trace}(\mathbf{Q}^2) + \frac{2(M^2 - 1)^2}{9} \text{trace}(\mathbf{Q})^2 + \frac{2(M^2 - 1)^2}{9} \text{trace}(\mathbf{Q})$$

UCRB: Computation of $E\{Z^2\}$

• Recall
$$Z = \sum_{i=1}^{L_0} X_i^2$$
, the second moment of Z is written as
 $E\{Z^2\} = \lambda^T E\{\mathbf{x_2x_2^T}\}\lambda = \lambda^T C_{\mathbf{x_2}}\lambda$

- Where $\boldsymbol{\lambda} = [\lambda_1, \lambda_2, \dots, \lambda_{L_0}]^T$ and $\mathbf{x}_2 = [X_1^2, X_2^2, \dots, X_{L_0}^2]^T$
- C_{x_2} requires computation of $E\{X_i^4\}$ and $E\{X_i^2X_j^2\}$.
- Approximation: •

$$X_{i} = v_{1}^{(i)}\alpha_{1} + v_{2}^{(i)}\alpha_{1} + \dots + v_{L_{0}}^{(i)}\alpha_{L_{0}}$$

- X_i 's are uncorrelated and hence independent.
- Finally ٠

$$[\mathbf{C_{x_2}}]_{ij} \approx \begin{cases} \frac{(M^2 - 1)^2}{3} & i = j\\ \frac{(M^2 - 1)^2}{9} & i \neq j \end{cases}$$

Maximization of LLF (Details 1/2)

1. Discrete-time LLF:

$$\Lambda(\mathbf{r};\nu,\theta,\varepsilon) \approx \operatorname{Re}\left[\sum_{n=0}^{NL_0-1} e^{-j(2\pi n\nu+\theta)} r[n] s_{\varepsilon}^*[n]\right]$$

2. Approximated CPM signal:

$$s_{\varepsilon}[n] \approx \begin{cases} \exp[-j(M-1)\pi h(n/N-\varepsilon)] & n \le n < NL_0 / 4 \\ \exp[+j(M-1)\pi h(n/N-L_0 / 2-\varepsilon)] & NL_0 / 4 \le n < 3NL_0 / 4 \\ \exp[-j(M-1)\pi h(n/N-L_0-\varepsilon)] & 3NL_0 / 4 \le n < NL_0 \end{cases}$$

3. Approximated LLF

$$\Lambda(\mathbf{r}; \boldsymbol{\nu}, \theta, \varepsilon) \approx \operatorname{Re}\left\{ e^{-j\theta} \left[\sum_{n=0}^{NL_0/4 - 1} e^{-j2\pi\upsilon n} r[n] e^{j(M-1)\pi h(n/N-\varepsilon)} + \sum_{n=NL_0/4}^{3NL_0/4 - 1} e^{-j2\pi\upsilon n} r[n] e^{-j(M-1)\pi h(n/N-L_0/2-\varepsilon)} \right] + \sum_{n=3NL_0/4}^{NL_0 - 1} e^{-j2\pi\upsilon n} r[n] e^{j(M-1)\pi h(n/N-L_0-\varepsilon)} \right] \right\}$$

Maximization of LLF (Details 2/2)

4. Rearrange LLF as

$$\Lambda(\mathbf{r}; \nu, \theta, \varepsilon) \approx \operatorname{Re}\left\{ e^{-j\theta} \left[e^{-j(M-1)\pi\hbar\varepsilon} \lambda_1(\nu) + e^{j(M-1)\pi\hbar\varepsilon} \lambda_2(\nu) \right] \right\}$$

- 5. If $\Gamma(v,\varepsilon) = e^{-j(M-1)\pi\hbar\varepsilon} \lambda_1(v) + e^{j(M-1)\pi\hbar\varepsilon} \lambda_2(v)$, the LLF is maximized when phase is $\widetilde{\theta} = \arg\{\Gamma(v,\varepsilon)\}$
- 6. The LLF becomes $|\Gamma(\tilde{\nu}, \tilde{\varepsilon})|$, which is maximized by maximizing

$$\left|\Gamma(\widetilde{\nu},\widetilde{\varepsilon})\right|^{2} = \left|\lambda_{1}(\widetilde{\nu})\right|^{2} + \left|\lambda_{2}(\widetilde{\nu})\right|^{2} + 2\operatorname{Re}\left[e^{-j2(M-1)\pi\hbar\widetilde{\varepsilon}}\lambda_{1}(\widetilde{\nu})\lambda_{2}^{*}(\widetilde{\nu})\right]$$

7. That is,

$$\widetilde{\varepsilon} = \frac{\arg\{\lambda_1(\widetilde{\nu})\lambda_2^*(\widetilde{\nu})\}}{2(M-1)\pi h}$$

$$\hat{\mathbf{v}} = \arg\max_{\widetilde{\mathbf{v}}} \left\{ \left| \lambda_1(\widetilde{\mathbf{v}}) \right| + \left| \lambda_2(\widetilde{\mathbf{v}}) \right| \right\}$$

Linear Phase Approximation: Other CPM Examples

FFT and Interpolation Precision

- Frequency MSE for different interpolators and zero padding factors.
- Both interpolation and zero padding must be present based on simulations.

SoS Estimation Algorithm (Details 1/3)

1. Likelihood function of all unknown parameters

$$p(\mathbf{r}; \delta, v, \theta, \mathbf{a}_{d}) = \frac{1}{(\pi \sigma^{2})^{N_{w}}} \exp\left(-\frac{1}{\sigma^{2}} \sum_{n=0}^{\delta-1} |r[n]|^{2}\right) \exp\left(-\frac{1}{\sigma^{2}} \sum_{n=\delta}^{N_{w}-1} |r[n] - s[n-\delta]e^{j(2\pi v n + \theta)}|^{2}\right)$$

2. Drop constant factors

$$p(\mathbf{r}; \delta, \nu, \theta, \boldsymbol{a}_d) = \exp\left(\frac{\delta - N_w}{\sigma^2}\right) \exp\left(\frac{2}{\sigma^2} \sum_{n=\delta}^{N_w - 1} \operatorname{Re}\left\{r^*[n]s[n-\delta]e^{j(2\pi\nu n+\theta)}\right\}\right)$$

3. Approximate the exponential function using 2nd degree Taylor series

$$p(\mathbf{r}; \delta, \nu, \theta, \mathbf{a}_{d}) \approx C(\delta) \left\{ 1 + \frac{2}{\sigma^{2}} \sum_{n=\delta}^{N_{w}-1} \operatorname{Re} \left\{ r^{*}[n] s[n-\delta] e^{j(2\pi \nu m+\theta)} \right\} + \frac{1}{\sigma^{4}} \sum_{n=\delta}^{N_{w}-1} \sum_{m=\delta}^{N_{w}-1} \operatorname{Re} \left\{ r^{*}[n] r^{*}[m] s[n-\delta] s[m-\delta] e^{j(2\pi \nu (m+n)+2\theta)} \right\} + \frac{1}{\sigma^{4}} \sum_{n=\delta}^{N_{w}-1} \sum_{m=\delta}^{N_{w}-1} \operatorname{Re} \left\{ r^{*}[n] r[m] s[n-\delta] s[m-\delta] e^{j(2\pi \nu (n-m)+2\theta)} \right\}$$

SoS Estimation Algorithm (Details 2/3)

4. Average the likelihood function w.r.t θ

$$p(\mathbf{r}; \delta, v, \mathbf{a}_{d}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \Lambda(r; \delta, v, \theta, \alpha_{d}) d\theta$$

$$\approx C(\delta) \frac{1}{\sigma^{4}} \sum_{n=\delta}^{N_{w}-1N_{w}-1} \operatorname{Re} \left\{ r^{*}[n]r[m]s[n-\delta]s^{*}[m-\delta]e^{j2\pi v(n-m)} \right\}$$

5. Rearrange the above likelihood function

$$p(\mathbf{r};\delta,\nu,\boldsymbol{a}_d) \approx C(\delta) \left(\sum_{n=\delta}^{N_w-1} |r[n]|^2 + 2\sum_{d=1}^{N_w-\delta-1} \operatorname{Re}\left\{ e^{-j2\pi d\nu} \sum_{n=\delta}^{N_w-d-1} r^*[n]r[n+d]s[n-\delta]s^*[n+d-\delta] \right\} \right)$$

6. Take the expectation w.r.t data symbols

$$p(\mathbf{r}; \delta, v) \approx C(\delta) \left(\sum_{n=\delta}^{N_w - 1} |r[n]|^2 + 2 \sum_{d=1}^{N_p - 1} \operatorname{Re} \left\{ e^{-j2\pi dv} \left(\sum_{n=\delta}^{N_p + \delta - d - 1} r^*[n]r[n+d]s[n-\delta]s^*[n+d-\delta] + R_{ss}(d) \sum_{n=N_p + \delta}^{N_w - d - 1} r^*[n]r[n+d] \right) \right\} \right)$$

$$Preamble$$

$$Random Data$$

SoS Estimation Algorithm (Details 3/3)

7. A frequency estimate can be derived from each term in the LLF

$$\hat{v}_{d} = \frac{1}{2\pi d} \arg \left\{ \sum_{n=\delta}^{N_{p}+\delta-d-1} r^{*}[n]r[n+d]s[n-\delta]s^{*}[n+d-\delta] + R_{ss}(d) \sum_{n=N_{p}+\delta}^{N_{w}-d-1} r^{*}[n]r[n+d] \right\}$$

8. If we use each estimate in its corresponding term, the LLF becomes independent of frequency offset

$$p(\mathbf{r};\delta) \approx C(\delta) \left(\sum_{n=\delta}^{N_w - 1} |r[n]|^2 + 2\sum_{d=1}^{N_p - 1} \left| \sum_{n=\delta}^{N_p - 1} r^*[n]r[n+d]s[n-\delta]s^*[n+d-\delta] + R_{ss}(d) \sum_{n=N_p + \delta}^{N_w - d - 1} r^*[n]r[n+d] \right| \right)$$

9. Since the LLF is now only a function of δ , it can be used for estimation of SoS

$$\hat{\delta} = \arg\max_{\delta} \left\{ C(\delta) \left(\sum_{n=\delta}^{N_w - 1} |r[n]|^2 + 2\sum_{d=1}^{N_p - 1} \left| \sum_{n=\delta}^{N_p - 1} r^*[n]r[n+d]s[n-\delta]s^*[n+d-\delta] + R_{ss}(d) \sum_{n=N_p + \delta}^{N_w - d - 1} r^*[n]r[n+d] \right| \right) \right\}$$

$$C(\delta) = (N_w - \delta)^q$$

Optimization of $C(\delta)$

- $P_{\rm FL}$ is computed via simulations
- $C(\delta)$ is more important for larger values of D

