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Abstract

Shaped offset quadrature phase-shift keying (SOQPSK) and Gaussian mini-

mum shift-keying (GMSK) are highly bandwidth efficient continuous phase mod-

ulation (CPM) schemes that are closely related when viewed as OQPSK-type

modulations at the receiver. For both of these modulation schemes, coherent

detectors are available with good performance in additive white Gaussian noise

(AWGN). However in many applications noncoherent receivers are preferred as

they are more robust, easy to synchronize and can recover input bits in the pres-

ence of phase noise. In this work we provide a comprehensive set of numerical

performance results for SOQPSK and GMSK noncoherent detectors in phase noise

channels. Since highly bandwidth efficient CPMs such as SOQPSK and GMSK

require extremely complex receivers, we also address this problem with several

complexity reduction procedures that have been proposed in literature. In par-

ticular, these are done for noncoherent detection of GMSK for the first time. We

also provide results for serially concatenated (SC)-SOQPSK and SC-GMSK as SC

systems with CPM as recursive inner codes have high coding gains at low power

and are widely used.
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Chapter 1

Introduction

Communication is one of the most basic needs of mankind and has come a

long way since the days of smoke signals. The trend in communication systems

has been fast shifting to digital because of the ever-growing demand for data

communication and because digital transmission offers data processing options

and flexibilities not available with analog transmission. A digital communication

system operates using waveforms from a finite set of possible waveforms, differing

from an analog communication system which sends a waveform from an infinite

variety of waveform shapes with theorically infinite resolution. The objective at

the receiver is hence to determine which waveform from the finite set of waveforms

was sent by the transmitter from the noisy received signal [39].

Other factors that have led to the digital communications revolution include

cheap and highly efficient new hardware, ever increasing service demands, com-

patilibility and flexibility that digital systems offer and ease of reproduction of

digital signals. Digital circuits are more reliable and can be reprogrammed to

perform different tasks, they are also less subject to distortion and interference.

Encryption and privacy can be easily built into digital systems.
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In this work, we study a widely used digital modulation scheme known as

continuous phase modulation (CPM). CPM consists of a large family of signals

that are especially suited for wireless communication [13] as they achieve high

power and bandwidth efficiency. The transmitted signal has a constant envelope,

i.e. no variations in its amplitude, which is essential in applications using non-

linear amplifiers. Constant envelope modulations are advantageous when simple

and inexpensive transmitters are of interest. The power efficiency and signal

spectrum of a CPM can be controlled by appropriately choosing the size of the

data alphabet, its modulation index, and the frequency pulse.

Constant envelope, power and spectral efficiency are favorable to the trans-

mitter and transmission medium, however the non linearity of the signal makes it

difficult to demodulate and synchronize. Spectral efficiency is often achieved by

increasing the size of the data alphabet and by using long and smooth frequency

pulses which further increase the complexity of the receiver [27]. Therefore, there

is a need to build receivers which are easy to implement with minimal loss in

detection efficiency.

In this work we study shaped-offset quadrature phase-shift keying (SOQPSK)

and Gaussian minimum shift-keying (GMSK) which are highly bandwidth effi-

cient continuous phase modulation schemes with several desirable qualities. Both

of these are MSK-type modulations and are similar to OQPSK [32]. Because of

their similary to OQPSK, these modulations can be detected with simple (and sub-

optimal) OQPSK-type detectors, which is a major motivation for their widespread

use. Our interest in these modulations is to compare their performance using non-

coherent detectors in phase noise channels. This comparison has not been done

before and is important since phase noise channels are often encountered in prac-
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tice and noncoherent detection is preferred in settings where coherent detection

is ineffective. Our results give system designers information that can be used to

design future communication standards.

In order to obtain further improvement in energy efficiency and large gains

coded systems are used. A class of codes with a multi-stage coding structure

whose probability of error decreases exponentially, while decoding complexity in-

creases only linearly were developed by Forney and are known as concatenated

codes [6]. In this work we also discuss the performance of serially concatenated

coded (SCC) noncoherent systems with SOQPSK and GMSK as the inner code

and a convolutional code (CC) as the outer code.

SOQPSK has been incorporated into military and aeronautical telemetry stan-

dards and it is applicable in any setting where bandwidth-efficient constant-

envelope modulations are needed. The version of SOQPSK, that has been part

of the MIL-STD 188-181 UHF Satcom standard [1], is known as “MIL-STD SO-

QPSK”. The version of SOQPSK which has a longer frequency pulse (and hence

more bandwith efficient) used by the telemetry group is known as “SOQPSK-

TG” [30].

GMSK can achieve a tradeoff among bandwith efficiency, power efficiency, and

detector complexity by appropriately configuring the bandwidth-time BT prod-

uct [15, 44]. The narrow spectral occupancy and rapid side-lobe roll-off provided

by the GMSK signal make it an attractive signaling format to use in frequency di-

vision multiple access (FDMA) communication systems where total system band-

width is constrained and adjacent channel interference needs to be minimized.

Binary GMSK signals of moderate bandwidth efficiency are implemented in com-

mercial wireless systems, it has been adopted as the modulation scheme for digital
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European cordless telecommunications (DECT), global system for mobile commu-

nications (GSM) [2,40], and the cordless telephone-second generation (CT-2) [16].

Binary GMSK signals of higher bandwidth efficiency have been adopted in the

design of future military satellite communication systems [25].

1.1 Motivation for this thesis and previous work

Since SOQPSK and GMSK are widely used in modern digital communica-

tion systems and there has not been much published about how they perform in

phase noise, this work quantifies performance of noncoherent detectors for these

modulation schemes in such channels for coded and uncoded systems. We com-

pare SOQPSK and GMSK noncoherent detectors’ performance in channels with

moderate to severe phase noise and give recommmendations on which of these

modulation schemes is a better alternative for a given requirment.

In order to build an efficient noncoherent detector, we need to start with the

existing optimal coherent detector. The optimal maximum likelihood sequence

detection (MLSD) scheme, which is implemented via the Viterbi algorithm (VA),

suffers from high complexity in terms of the required number of trellis states and

matched filters (MF). A number of techniques have been developed that address

this problem, Svensson, Sundberg and Aulin [4] proposed a detector based on

a simpler CPM scheme than the one used in the trasmitter. This is known as

the pulse truncation (PT) technique and it truncates the frequency pulse to a

shorter length, thereby reducing the number of trellis states and MFs simultane-

ously. Other approaches to reduce the number of MFs use a set of orthonormal

basis functions [19], sampling functions [36], Walsh functions [43], and spaced

sinusoids [19]. Previous work on reducing the number of trellis states includes

4



a reduced search algorithm [37] on the full trellis, use of decision feedback on a

smaller trellis [14, 41]. The pulse amplitude modulation (PAM) representation

of CPM which was introduced by Laurent [23] who showed that a CPM scheme

can be represented by a superposition of PAM waveforms is a popular complexity

reduction approach and has received a lot of attention in literature.

The complexity reduction techniques for detectors that we use in this work

include the PT approach and decision feedback for reducing the number of trellis

states. PT for SOQPSK-TG was used in [29] and resulted in a complexity reduc-

tion by a factor of 128 with a performance loss of just 0.2 dB. It is used for GMSK

with BT = 0.25 in this work, we also use decision feedback for updating phase

states in the GMSK trellis for the first time.

There has been extensive work done on noncoherent detection schemes, how-

ever most of the existing noncoherent detectors use extremely complex metric

computations and are difficult to implement in digital hardware. Also, most of

the available noncoherent detection algorithms are not applicable to coded sys-

tems as discussed in [8]. Colavolpe and Raheli describe a noncoherent sequence

estimation which linearizes the CPM using Laurent’s decomposition in [10]. They

also present algorithms applicable to iterative processing, fading and ISI chan-

nels in [9]. Though these algorithms have been proven to be efficient in presence

of strong phase noise, they are computationally complex and only applicable to

simple modulations.

Howlader and Luo consider noncoherent detection of SCC MSK in [18] using

exponential windowing for updating phase states. Exponential windowing results

in considerable complexity reduction but this algorithm still requires a lot of

computational resources as it calculates Bessel functions for each trellis branch.
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The other drawback with it is that it cannot be used in log domain for the soft

input soft output (SISO) algorithm in Chapter 7.

Building on ideas from [22,34] a simple heuristic noncoherent detection scheme

with performance close to that of coherent detection at moderate phase noise was

used in [21] for SOQPSK systems. It is developed here for the first time in coded

and uncoded GMSK systems with phase noise.

After the introduction of turbo codes in 1993 [7] there has been a lot of research

in the area of concatenated convolutional codes separted by a pseudorandom bit

interleaver and decoded iteratively. An a posteriori probability (APP) module for

iterative decoding of concatenated codes was proposed by Benedetto et al. in [5]

and this led to the enormous popularity of concatenated codes. Serially concate-

nated coded systems with CPM as inner code have been qualitavely analyzed

in [26]. Iteratative decoding for coded OQPSK and SOQPSK was first stud-

ied in [24], reduced complexity detection for coded SOQPSK was later described

in [27,29]. Coded GMSK systems have been studied in [35], we study the reduced

complexity designs and performance of coded GMSK (with BT = 0.3, 0.25) for

the first time in this work.

Noncoherent detection in SCC systems with iterative detection is a recent

development, this work compares the peformance of coded SOQPSK and GMSK

systems in channels with phase noise for the first time.

1.2 Outline for the chapters that follow

In Chapter 2 we look at the general CPM signal model and at the more specific

signal models for SOQPSK and GMSK. We also discuss the SOQPSK precoders

which set it apart from ordinary CPM. In Chapter 3 we present the traditional
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optimal maximum likelihood sequence detector (MLSD) for CPM which serves

as the benchmark detector for what follows. We discuss optimal and reduced

complexity coherent detectors for SOQPSK and look at analytical and simulated

results. Coherent detectors for GMSK are studied in Chapter 4.

We discuss a noncoherent detection algortithm that can be used in both coded

and uncoded systems in Chapter 5. We also look at performance of noncoherent

detectors for SOQPSK and GMSK in AWGN. In Chapter 6 we present a simple

phase noise model with varying carrier phase and investigate the performance

of noncoherent detectors for SOQPSK and GMSK in phase noise channels for

uncoded systems.

Chapter 7 discusses serially concatenated coded systems with iterative decod-

ing. We present the SISO algorithm along with the reduced complexity CPM

SISO which is used in SCC systems. We then look at the noncoherent SOQPSK

and GMSK performance in SCC systems with phase noise. Finally, we offer con-

clusions in Chapter 8.

1.3 Paper Publication

This thesis is partly based on the following publication:

A. Syed and E. Perrins, “Comparision of Noncoherent Detectors for

SOQPSK and GMSK in Phase Noise Channels”, to appear in Proceed-

ings of the International Telemetering Conference (ITC), Las Vegas,

NV, October 22-25, 2007.
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Chapter 2

Signal Models

In this chapter we start by developing the general CPM signal model and then

discuss the specific cases for SOQPSK and GMSK.

2.1 General CPM signal model

We will use complex-baseband notation to represent the various signals. All

CPM signals can be described as [3]

s(t; α) =

√
E

T
exp {jψ(t; α)} (2.1)

where E is the symbol energy, T is the symbol duration, and ψ(·) is the phase of

the signal. The information in a CPM signal is carried in its phase which is given

by

ψ(t; α) , 2πh
n∑

i=−∞
αiq(t− iT ), nT ≤ t < (n+ 1)T (2.2)

where h is the modulation index, α = {αi} are the data symbols drawn from an

M -ary alphabet, and q(t) is the phase pulse. We assume that the modulation
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index is a rational number of the form [38]

h , 2K/p. (2.3)

The phase pulse q(t) is usually thought of as the time-integral of a frequency

pulse f(t) with area 1/2 and duration LT and is given by

q(t) ,





0 t < 0
∫ t

0

f(τ) dτ 0 ≤ t < LT

1/2 t ≥ LT.

(2.4)

When L = 1 the signal is said to be full response and when L > 1 it is said to

be partial response. We consider both types of signals in this work.

Considering that the modulation index is a rational number and that q(t) has

variations only in the finite interval (0, LT ), the phase signal (2.2) can be written

as

ψ(t; α) = θ(t; αn) + θn−L. (2.5)

The first of these terms is the correlative phase and is defined as

θ(t; αn) , 2πh
n∑

i=n−L+1

αiq(t− iT ) (2.6)

which is a function of the correlative state vector

αn , αn−L+1, · · · , αn−1, αn. (2.7)

The correlative state vector contains the L most recent data symbols from (2.2)

9



and is drawn from an alphabet of ML values. To obtain the second term in (2.5)

we manipulate the expression

θn−L , πh

n−L∑
i=−∞

αi (2.8)

which contains the remainder of the data symbols from (2.2). θn−L is known

as the phase state. Inspite of being a function of an infinite number of data

symbols, (2.8) assumes only p unique values when taken modulo-2π due to the

rational modulation index assumption. It can also be replaced by the modulo-p

look-up table when the table is indexed by the phase state index In−L.

This means that the CPM signal in (2.1) can be described using a trellis with

a finite number of states (a finite state machine) with input variable αn and the

L-tuple state vector given by

Sn = (θn−L, αn−L+1, · · · , αn−2, αn−1) (2.9)

and each branch of the trellis can be defined uniquely by the (L+ 1)-tuple

σn = (θn−L, αn−L+1, · · · , αn−2, αn−1, αn). (2.10)

Hence, the number of states required to describe the CPM signal in (2.2) is [3,33]

NS = pML−1. (2.11)

2.2 Signal Model for SOQPSK

The SOQPSK signal can be compactly defined using (2.1).

10



For SOQPSK, αi is drawn from a ternary alphabet, i.e αi ∈ {−1, 0,+1}, where

M = 3. The modulation index is h = 1/2. In this work we discuss two versions

of SOQPSK, SOQPSK-MIL [1], which is full response (L = 1) with a rectangular

shaped frequency pulse

fMIL(t) =





1
2T
, 0 ≤ t < T

0, otherwise.

(2.12)

The second, SOQPSK-TG [17, 30], is partial-response with L = 8 and has a

frequency pulse given by

fTG(t) , A
cos(πρBt

2T
)

1− 4(ρBt
2T

)
2 × sin(πBt

2T
)

πBt
2T

× w(t) (2.13)

where the window is

w(t) ,





1, 0 ≤ | t
2T
| < T1

1
2

+ 1
2
cos( π

T2
( t

2T
− T1)), T1 ≤ | t

2T
| ≤ T1 + T2

0, T1 + T2 < | t
2T
|.

(2.14)

The constant A is chosen such that the area of the pulse is equal to 1/2 and

T1 = 1.5, T2 = 0.5, ρ = 0.7 and B = 1.25. Figure 2.1 shows the frequency pulse

fTG(t) and corresponding phase pulse qTG(t).

2.3 SOQPSK precoders

SOQPSK is different from ordinary CPM in that ternary data are the output

of a precoder as shown in Figure 2.2. There are two commonly used precoders for
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Figure 2.1. The length-8T frequency and phase pulses for
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SOQPSK.

2.3.1 Standard SOQPSK precoder

The standard precoder converts binary data an ∈ {0, 1} into ternary data αi

according to the mapping [38]

αn = (−1)n+1(2an−1 − 1)(an − an−2). (2.15)

an ∈ {0, 1} αn ∈ {−1, 0, 1} s(t; α)

PRECODER
CPM

MODULATOR

Figure 2.2. Signal model for uncoded SOQPSK.

The original motivation for SOQPSK was that (2.15) leads to a simple (but

12



suboptimal) symbol-by-symbol detection architecture [11]. The precoder orients

the phase of the CPM signal in (2.2) such that it behaves like the phase of an

OQPSK signal that is driven by the bit sequence ai, the inphase and quadrature

bits can thus be recovered using a standard OQPSK detector. The precoder

undoes the infinite phase response of the CPM modulator, i.e the phase state

in (2.8), which in turn allows the simple symbol-by-symbol detection architecture.

In this work, we seek trellis based optimal detectors for the system in Figure 2.2.

The SOQPSK precoder in (2.15) imposes three important constraints on the

ternary data [38]:

1. While αi is viewed as being ternary, in any given symbol interval αi is

actually drawn from one of two binary alphabets, {0,+1} or {0,−1}.

2. When αi = 0, the binary alphabet for αi+1 switches from the one used for

αi, when αi 6= 0 the binary alphabet for αi+1 does not change.

3. A value of αi = +1 cannot be followed by αi+1 = −1, and vice versa (this is

implied by the previous constraint).

2.3.2 Recursive SOQPSK precoder

Another useful precoder for SOQPSK that satisfies the constraints described

above can be obtained by differentially encoding the original bits an at the trans-

mitter. The differential (recursive) nature of this alternate precoder formulation

is essential when SOQPSK is used as the inner code in a serially concatenated

system [6] to realize coding gains. The differentially encoded bits are

dn = an ⊕ dn−2 (2.16)
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where ⊕ is the XOR operator for binary data in the set {0, 1}. The precoder in

this case is

αn = (−1)nand
′
n−1d

′
n−2 (2.17)

where d′n ∈ {−1, 1} is the antipodal counterpart of dn and is given by d′n = 2dn−1.

Although shown in equation form in (2.17), this recursive precoder is the same as

the one shown as a block diagram in [24, Fig. 7]. This is the precoder we use for

all the SOQPSK systems discussed in this work as differential encoding is enabled

for noncoherent detection of SOQPSK.

2.4 Signal Model for GMSK

GMSK is a popular form of CPM [3] and is also compactly defined by (2.1).

The frequency pulse f(t) for GMSK is given by

f(t) =
1

2T

{
Q

[
2πB

t− T/2

(ln 2)1/2

]
−Q

[
2πB

t+ T/2

(ln 2)1/2

]}
(2.18)

where the parameter B is chosen to obtain desired distance or spectral proper-

ties [3] and

Q(t) =
1√
2π

∫ ∞

t

e−τ
2/2 dτ. (2.19)

In this work we use GMSK with BT = 0.3 and BT = 0.25. The reason

for choosing these particular cases of BT products is that the performance of

GMSK with BT = 0.25 in AWGN is very close to that of SOQPSK-TG and

GMSK with BT = 0.3 is a widely used for several applications. We also use

the same complexity reduction technique i.e frequency pulse truncation [42] for

SOQPSK-TG and GMSK with BT = 0.25. This allows us to better compare their
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performance in phase noise and coded systems.

GMSK is binary (M = 2) and has a modulation index h = 1
2
. For the case

when BT = 0.3, the signal is partial response with L = 3, Figure 2.3 shows the

frequency pulse f(t) and corresponding phase pulse q(t).
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An ever more bandwith efficient signal results when BT = 0.25, this is also

partial response with L = 4. Figure 2.4 shows f(t) and g(t) for GMSK with

BT = 0.25.

2.5 Comparison of Power Spectral Densities
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Figure 2.5. Power spectral densities for SOQPSK and GMSK

Figure 2.5 shows the power spectral densities for SOQPSK and GMSK. The

amplitude is dB relative to an unmodulated carrier (dBc). It can be observed that

SOQPSK-TG is the most bandwidth efficient and GMSK (BT = 0.25) is slightly

more bandwith efficient when compared to GMSK (BT = 0.3)

Now that we have defined all the required signal models, we can start building

receivers for these modulation schemes.
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Chapter 3

Coherent Detectors for SOQPSK

Although our objective is to arrive at noncoherent detectors for SOQPSK and

GMSK, we will first examine optimal coherent detectors. This will yield models

upon which the noncoherent detectors will be built. In this chapter we start with

a discussion of optimal coherent maximum likelihood detectors for CPM, then we

build coherent detectors for SOQPSK-MIL and SOQPSK-TG.

3.1 Optimal Coherent ML Detectors for CPM

A maximum likelihood (ML) reciever is that receiver which selects the most

likely signal sent, given a waveform r(t) that it has observed [3]. We discuss an

ML receiver for a signaling waveform sent through additive white Gaussian noise,

the AWGN channel. In what follows, we refer to the estimated and hypothesized

values of a generic quantity a as â and ã respectively. Also, â and ã can assume

the same values as a itself.

The received signal is

r(t) = s(t; α) + n(t) (3.1)
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where n(t) is a complex valued AWGN process with one-sided power spectral den-

sity N0. The log-likelihood function for (3.1), given a hypothetical data sequence

α̃, is [27]

Λ(α̃) = −
∫ ∞

−∞
|r(t)− s(t; α̃)|2 dt. (3.2)

The maximum likelihood sequence detector (MLSD) finds the sequence α̃ that

maximizes (3.2). As s(t; α̃) is constant envelope, maximizing (3.2) is equivalent

to maximizing the correlation [3]

λ(α̃) = Re

∫ ∞

−∞
r(t)s∗(t; α̃) dt (3.3)

where (·)∗ represents the complex conjugate.

A reciever based on these calculations is called a correlation receiver. The

Viterbi Algorithm (VA) can be used to efficiently compute (3.3). The following is

the organization of the trellis which contains pML branches. Each branch vector

is the (L+ 1)-tuple

σn , (θn−L, αn−L+1, · · · , αn−1, αn) (3.4)

= (θn−L,αn) (3.5)

which can be represented equivalently, as a phase state index and a correlative

state vector as in (3.5). Each branch has a starting state

Sn = (θn−L, αn−L+1, · · · , αn−1) (3.6)
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and an ending state

En = (θn−L+1, αn−L+2, · · · , αn−1, αn). (3.7)

Using these definitions, (3.3) can be computed recursively by [3]

λn+1(Ẽn) = λn(S̃n) + Re{(e−jθn−Lzn(α̃n))} (3.8)

where λn(·) is the cumulative metric for a given state at index n and zn(α̃n) is a

sampled matched filter output

zn(α̃n) ,
∫ (n+1)T

nT

r(t)e−jψ(t;α̃n) dt (3.9)

which is one symbol interval’s worth of correlation in (3.3) [27]. Using (3.9) in (3.8)

the increment for the cumulative metric is given by

Re

{
e−jθn−L

∫ (n+1)T

nT

r(t)e−jψ(t;α̃) dt

}
. (3.10)

The implementation of the receiver can be described using (3.10). This is

shown in Figure 3.1. The received signal is fed to the bank of matched filters

(MFs). The MFs are based on the correlative phase θ(·) and produceML complex-

valued outputs, one for each possible value of the correlative state vector. The

MF bank can be constructed with [3]

NMF = ML (3.11)

real-valued MFs. The set of ML MF outputs are then rotated by the p phase
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Figure 3.1. Optimal CPM detector.

states, resulting in pML real-valued inputs to the VA [27]. Then it’s just the

matter of implementing the VA, each ending state En has M possible metrics.

As M branches merge into each ending state of the trellis, there are M candidate

values for λn+1(Ẽn). At each ending state, the VA declares a local survivor, which

is the branch with the maximum metric. The identity of each local survivor is

stored in a traceback matrix for decoding later on. The state with the maximum

overall metric at the end of n-th symbol interval is called the global survivor. The

VA traces back along the sequence of local survivors which precede the global

survivor to a sufficient length known as the traceback length(TB). The VA then

outputs a reliable decision at this delayed point in time, the decision being the

data associated with the surviving branch at Ŝn−TB. The local suvivors, global

survivors, and other values stored in the traceback matrix are used a number of

times in the noncoherent detector.

3.2 Coherent Detection Algorithm for Full-Response

SOQPSK

The precoder in (2.17) can be described with an 8-state trellis, with three

binary-valued state variables : n-even/n-odd, an−1 and an−2. If we construct a

time-varying trellis, with different sections for n-even and n-odd, then we have
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Figure 3.2. 4-state time-varying trellis for the precoder/CPM Mod-
ulator. The labels along the branches are for the input bit/output
symbol pair an/αn.

the 4 state trellis shown in Figure 3.2. The labels along each branch show the

input bit/output symbol pair, an/αn, for the given branch. The state variables

are an−1, and an−2 and are ordered such that the inphase bit of this pair is always

the MSB and the quadrature bit of this pair is always the LSB. When n is even,

the branch bit an replaces the inphase bit in the state variable, and likewise for

the quadrature bit when n is odd. Thus for n-even, the state variables are ordered

(an−2, an−1) and for n-odd the ordering is (an−1, an−2). Each state in Figure 3.2

is labeled with a unique value of Sn ∈ {00, 01, 10, 11}, and so the branches can be

described as

σn = (Sn, an). (3.12)

There is a one-to-one mapping between the trellis state values, in the set

{00, 01, 10, 11}, and the CPM phase states which is shown in Figure 3.3. It is

evident that the CPM phase states are a π/4-rotated version of the traditional

QPSK constellation.
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With the trellis defined for the system in Figure 2.2, we outline the optimal

detector for the received signal (3.1). SOQPSK-MIL being full-response, no addi-

tional states are required and an optimal maximum likelihood sequence detection

(MLSD) detector can be obtained from this 4-state trellis [24] using the Viterbi al-

gorithm discussed in the previous section. Using (3.8) the recursive metric update

for this specific case is given by

λn+1(Ẽn) , λn(S̃n) + Re{e−jθ̃n−1zn(α̃n)} (3.13)

where λn(·) is the cumulative metric for a given state at index n and zn(α̃n) is a

sampled matched filter output given by

zn(α̃n) ,
∫ (n+1)T

nT

r(t)e−j2πhα̃nq(t−nT ) dt. (3.14)

As two branches merge into each ending state in Figure 3.2, there are two

candidate values for λn+1(Ẽn). The VA is used to find the output symbols.
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3.3 Detection of Partial-Response SOQPSK-TG

After defining the optimal coherent detector for full-response SOQPSK, we

can look at the modifications needed to arrive at the coherent detector for partial-

response SOQPSK.

An optimal detector for the TG version of SOQPSK optimal detector requires

p · 2L−1 or 512 phase states due to the partial-response of the waveform. Instead

of using the optimal detector with a 512-state trellis we pursue a near-optimum

approximation for SOPQPSK-TG. The appromixation method we use is frequency

pulse truncation (PT) [42] which is based on the 4-state trellis in Figure 3.2 with

a loss in performance of 0.2 dB. This minor loss is attractive in light of the large

reduction in the number of trellis states.

The PT approach stems from the fact that frequency pulses which are long and

smooth are oftentimes near zero for a significant portion of their duration. This

is clearly the case for fTG(t) in Figure 2.1. We base the detector on a frequency

pulse which has been truncated to a duration of one symbol time(full-response).

Since the detector uses a phase pulse, we translate these arguments accordingly

and obtain a modified phase pulse

qPT (t) =





0, t < 0

q(t+ (L− 1)T/2), 0 ≤ t ≤ T

1/2, t > T.

(3.15)

Even though the phase pulse in (3.15) has infinite duration, its time-varying

portion has been shortened to the interval [0, T ] as shown in Figure 3.4, which

gives it full-response behavior. Now, it can be used with the 4-state trellis in
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Figure 3.4. Truncated frequency and phase pulse for SOQPSK-TG.

Figure 3.2 and in the full-responce CPM metric (3.14), which serves as the branch

metric increment for the Viterbi algorithm in (3.13).

3.4 Performance

The error performance of SOQPSK in additive white Gaussian noise is de-

scribed using error events and minimum distance concepts as discussed in [29].

The normalized squared Euclidean distance of CPM is [3]

d2 =
log2Minfo

2T

∫
|s(t;αTx)− s(t;αRx)|2dt (3.16)

where log2Minfo is the number of bits per symbol (for SOQPSK we haveMinfo = 2).

Using union bound the probability of bit error for uncoded SOQPSK-MIL and
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SOQPSK-TG using the 4-state time variant trellis is found to be bounded-by

Pb ≤ Q

(√
d2

0

Eb
N0

)
+Q

(√
d2

1

Eb
N0

)
(3.17)

where Eb/N0 is the bit energy to noise ratio and Q(t) is the Q function given

by (2.19)

For SOQPSK-MIL d2
0 = 1.73 [3] and d2

1 = 2.36. For SOQPSK-TG we have

d2
0 = 1.60 and d2

1 = 2.59. Figures 3.5 and 3.6 and show the theoretical and

simulated curves for SOQPSK-MIL and SOQPSK-TG using pulse truncation. It

can be observed that the PT approximation results in a loss of only 0.2 dB which

agrees with the analysis and simulation published in [29].

25



2 4 6 8 10 12
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

P
b

 

 

MLSD−TG (analysis)
PT−TG (simulation)

Figure 3.6. Performance of Reduced Complexity Coherent Detector
for SOQPSK-TG.

Differential encoding produces two bit errors for each detection error, hence

the bit error performance of SOQPSK systems without differential encoding would

be (3.17) scaled by a factor of 1
2
. At Pb = 10−5, the scale factor translates to a 0.3

dB advantage for a system without differential encoding. However, this advantage

approaches zero asymptotically as Eb/N0 increases.
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Chapter 4

Coherent Optimal and Reduced

Complexity Detectors for GMSK

We discuss the optimal coherent detector models for GMSK with BT = 0.3

and BT = 0.25 in this chapter. Then we build reduced complexity detectors

which use a much smaller trellis for the first time.

4.1 Optimal detectors for GMSK

Starting with the information carrying phase in (2.2), for h and f(t) for any

symbol interval n, the phase ψ(t,α) is defined by αn, the correlative state vector

(αn−L+1, · · · , αn−2, αn−1) and the phase state θn−L, where

θn−L = hπ

n−L∑
i=−∞

αi mod 2π. (4.1)

The number of correlative states is finite and equal to ML−1. For ratio-

nal modulation indices, h = 2k/p the phase trellis has p different phase states

with values 0, 2π/p, 2.2π/p, · · · , (p − 1)2π/p. The total state is defined by the
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L-tuple σn = (θn−L, αn−L+1, · · · , αn−2, αn−1), and the number of such states is

Ns = pML−1.

The number of matched filters required would be ML as outlined in section 3.1

and given by

MF(αn) , exp(−j2πh
n∑

i=n−L+1

αiq(t− nTs)), 0 ≤ t < LTs (4.2)

where α̃n is given by the L-tuple (αn−L+1, · · · , αn−2, αn−1, αn) and Ts denotes one

symbol time. These properties are used in receiver structures for any CPM.

4.1.1 GMSK with BT = 0.3

GMSK with BT = 0.3 has a frequency pulse with L = 3 (Figure 2.3), the

modulation index h is 1/2, the number of phase states p is 4. Using (2.11) we

have 16 (4 · 22) trellis states defined by the 3-tuple

Sn = (θn−3, αn−2, αn−1) (4.3)

and the 4 phase states are 0, π/2, π, 3π/2. This trellis is shown in Figure 4.1. This

requires 8 matched filters (as L = 3) as given by (4.2) and for this case α̃n is

defined by (αn−2, αn−1, αn).

Now that the trellis is set up and the matched filters have been defined, the op-

timal coherent detector for GMSK is the implementation of the Viterbi algorithm

with the recursive metric update (3.13) as detailed in section 3.2.
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resent the trellis states. The branches represent the output symbol
αn.

29



4.1.2 GMSK with BT = 0.25

Optimal coherent detection of GMSK with BT = 0.25 is very similar to that

of GMSK with BT = 0.3, but the trellis is larger as the frequency pulse has a

longer duration of L = 4. Using (2.11) we have 32 (4 · 23) trellis states defined by

the 4-tuple

Sn = (θn−4, αn−3, αn−2, αn−1). (4.4)

The trellis would be similar to the BT = 0.3 trellis shown in Figure 4.1. We

would require 16 matched filters (as L = 4) as given by (4.2) and for this case α̃n

is defined by (αn−3, αn−2, αn−1, αn).

The optimal coherent detector with 32 trellis states and 16 matched filters

would be difficult to implement so we look for ways to reduce complexity with a

minimal loss in performance.

4.2 Reduced complexity detectors for GMSK

In this section we discuss methods to reduce the trellis size to 4 states for each

of these GMSK schemes. One of the reasons to use a 4 state for GMSK is to

better compare its performance with SOQPSK which has a 4 state trellis.

4.2.1 Complexity reduction for GMSK with BT = 0.3

For the 16 state trellis for GMSK with BT = 0.3 each branch is defined by σn =

(θn−3, αn, αn−1, αn−2) and the trellis states are defined by Sn = (θn−3, αn−1, αn−2),

this can be reduced to a 4 state trellis having the same 8 matched filters by using

decision feedback [14] to update phase states. For such a trellis the states would

be defined as Sn = (αn−2, αn−1) and branches as σn = (αn−2, αn−1, αn). As can
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be observed there is no phase reference in either of the definitions, we store the

phase associated with each trellis state and update it at each stage or time-step

of the trellis using (4.1).

Each trellis state starts off with phase θ = 0 and for each subsequent stage of

the trellis the phase is updated using (4.5). There are two branches which end

in each trellis state and the branch which has the higher branch metric is the

survivor, with symbol α̂n−2, the phase state for the hypothesised ending state can

then be estimated using

θ̂n−2(Ẽn) = θ̂n−3(S̃n) + πhα̃n−2 (4.5)

which is a simplified version of (4.1) for this particular case.

-1,-1
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+1,-1
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-1

-1

-1

+1

+1

+1

-1

+1

Figure 4.2. GMSK trellis reduced to 4 states, αn−2, αn−1 represent
the trellis states. The labels along the branch represent the output
symbol αn.

The reduced complexity trellis with just 4 trellis states is showin in Figure 4.2.

Since each state has the correlative state vector and a phase state θ̂ associated
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with it, we can apply the Viterbi alorithm for coherent detection. This detector

would have very close performance as the optimal detector with 16 trellis states as

the number of matched filters remain unchanged and we store a matrix of phase

states associated with each trellis state and use decision feedback to update it.

4.2.2 Complexity reduction for GMSK with BT = 0.25
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Figure 4.3. Truncated frequency and phase pulses for GMSK with
BT = 0.25.

We would like to use the same 4 state trellis as above, for GMSK with BT =

0.25. Observing that the frequency pulse f(t) in Figure 2.4 is near zero for at

least one symbol duration we can use the pulse truncation approach outlined

in section 3.3 and truncate the frequency pulse at the receiver to a duration

of 3 symbol times as shown in Figure 4.3. This reduces the number of trellis

states to 16 defined by the 3-tuple (θn−3, αn−2, αn−1), each branch is defined by
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Bn = (θn−3, αn, αn−2, αn−1). This is the exact same trellis as in Figure 4.1 for

GMSK with BT = 0.3. We can follow the same procedure as in the previous

section and use decision feedback to reduce it to the 4-state trellis in Figure 4.2.
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Figure 4.4. Performance of Coherent Detector for GMSK with
BT = 0.3.

4.3 Performance

The error performance of coherent detectors for GMSK in additive white Gaus-

sian noise can be described using error events and minimum distance concepts as

stated in section 3.4. Using union bound the probability of bit error (MLSD) for

GMSK is found to be bounded-by
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Figure 4.5. Performance of Coherent Detector for GMSK with
BT = 0.25.

Pb ≤ Q

(√
d2

0

Eb
N0

)
+Q

(√
d2

1

Eb
N0

)
(4.6)

which is similar to SOQPSK.

For GMSK with BT = 0.3, d2
0 = 1.78 and d2

1 = 2.26 and for GMSK with BT =

0.25 we have d2
0 = 1.69 and d2

1 = 2.37. Figures 4.4 and 4.5 and show the theoretical

and simulated curves for GMSK withBT = 0.3 andBT = 0.25 respectively. It can

be observed that the peformance of reduced complexity detector for BT = 0.3 is

almost the same as MLSD peformance and the loss in performance for BT = 0.25

is less than 0.01 dB.
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Chapter 5

Noncoherent Detector models

5.1 Introduction

It is generally assumed that the receiver has complete knowledge of the carrier

phase, this requires a phase locked loop (PLL) in the receiver for carrier tracking.

Such is detector is called a coherent detector, the drawbacks of using coherent

detection include expensive hardware, increase in receiver complexity, false locks

at low SNR, phase slips, loss of locks due to Doppler shift etc.

Noncoherent detection eliminates the need for PLLs and provides a way to

recover the information bits in the presence of phase noise [21].

5.2 Noncoherent Detection Algorithm

Now, the model for the received complex-baseband signal is

r(t) = s(t,α)ejφ(t) + n(t) (5.1)
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the phase shift φ(t) introduced by the channel is unknown in general, for the

moment we assume that it is a constant (but unknown) value of φ0, we con-

sider variations in carrier phase when we study the performance of noncoherent

detectors.

Using a similar approach as [22,34] the cumulative metric for a given state at

index n in (3.13) is modified as

λn+1(Ẽn) = λn(S̃n) + Re{Q∗n(S̃n)e−jθ̃n−Lzn(α̃n)} (5.2)

where the complexed-valued phase reference Qn(·) is given by the recursive update

Qn+1(Ẽn) , aQn(S̃n) + (1− a)e−jθ̃n−Lzn(α̃n) (5.3)

with the forgetting factor a being a real number in the range 0 < a < 1. The

forgetting factor a defines the rate at which the older phase estimates are updated.

The phase references are updated after the local surviors at each trellis stage of

the Viterbi algorithm are declared.When a is chosen to be close to 1, more weight

is assigned to the previous phase reference and the update is done very slowly.

This is closer to coherent detection. If a is chosen to be close to 0, phase references

are updated at a faster rate and less weight is assigned to its previous values. This

algorithm can be used for noncoherent detection of any CPM including SOQPSK

(MIL and TG) and GMSK.

5.3 Performance

In this section we look at the performance of noncoherent detectors for SO-

QPSK (MIL and TG) and GMSK, in the presence of AWGN only (no phase noise),
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a=1 (Coherent)
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0.875 0.75
1.0 0.2

Figure 5.1. Performance of Noncoherent a) SOQPSK-MIL and
b) SOQPSK-TG detectors in AWGN (no phase noise) with varying
values of a. In the table to the right of the plot, the loss relative to
MLSD at Pb = 10−5 is quantified for each value of a.
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Figure 5.2. Performance of Noncoherent GMSK with a) BT = 0.3
and b) BT = 0.25 detectors in AWGN (no phase noise) with varying
values of a. In the table to the right of the plot, the loss relative to
MLSD at Pb = 10−5 is quantified for each value of a.
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for a few values of the forgetting factor a.

Table 5.1. Loss in dB for noncoherent systems with no phase noise
at Pb = 10−5.
Modulation Scheme a = 1 a = 0.875 a = 0.75 a = 0.625
SOQPSK-MIL 0 0.45 1 1.65
SOQPSK-TG 0.2 0.75 1.60 2.60
GMSK with BT = 0.3 0 0.70 0.65 0.9
GMSK with BT = 0.25 0 0.75 1.0 1.1

The forgetting factor a has an unavoidable impact on bit error performance.

Unlike PCM/FM in [21], the performance of noncoherent SOQPSK detectors is

very sensitive to this value. However, the GMSK noncoherent detectors are not

very sensitive to the value of a. Figures 5.1 and 5.2 show the performance of these

noncoherent detectors in AWGN only (no phase noise), for varying values of a.

The GMSK curves are closer to the MLSD performance when compared to the

SOQPSK curves. Table 5.1 summarizes the loss in dB for noncoherent systems

with no phase noise as a function of the forgetting factor at Pb = 10−5. It can be

observed that the loss grows quite large as a decreases.

The demerit of these noncoherent detectors is that they may not be applicable

to fading channels [21] since the algorithm tracks only the phase variations and

does not use amplitude reference symbols as [18].
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Chapter 6

Performance in Phase Noise

Channels

6.1 Introduction

This chapter discusses the numerical performance results for SOQPSK-MIL,

SOQPSK-TG and GMSK noncoherent detectors. Although we are interested in

a non coherent detector, the natural choice for benchmark is optimal coherent

maximum likelihood sequence detection (MLSD). The MLSD probability of bit

error for differentially encoded SOQPSK-MIL and SOQPSK-TG using the 4-state

time variant trellis and for GMSK using the optimum trellis is tightly upper-

bounded by

Pb ≤ Q

(√
d2

0

Eb
N0

)
+Q

(√
d2

1

Eb
N0

)
(6.1)

where Eb/N0 is the bit-energy-to-noise ratio and Q(t) is the Q function given

by (2.19).
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As discussed in previous chapters, the values for d2
0 and d2

1 for SOQPSK and

GMSK are summarized in Table 6.1.

Table 6.1. Error Distances for SOQPSK and GMSK.

Modulation Scheme d2
0 d2

1

SOQPSK-MIL 1.73 2.36
SOQPSK-TG 1.60 2.59
GMSK with BT = 0.3 1.78 2.24
GMSK with BT = 0.25 1.69 2.37

6.2 Phase Noise Model

Since the motivation for a noncoherent receiver is the case when the carrier

phase is not known and assumed to be varying, a simple model will be introduced

for variations in the carrier phase. Let [31]

φn ≡ φ(nT ) = φn−1 + νn mod 2π (6.2)

where {νn} are independent and identically distributed Gaussian random variables

with zero mean and variance δ2. This models the phase noise as a first order

Markov process with Gaussian transition probability distribution. For perfect

carrier phase tracking, δ = 0.

6.3 Performance

Using the phase noise model from above, we present simulated results for

performance of noncoherent detectors in this section.

Figures 6.1, 6.2, 6.3 and 6.4 show the performance of noncoherent detectors

for SOQPSK and GMSK in phase noise as function of the forgetting factor a,

41



2 4 6 8 10 12 14
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

(a)

E
b
/N

0
 [dB]

P
b

 

 
a=0.625
a=0.75
a=0.875
MLSD

a loss [dB] at
Pb = 10−5

0.625 1.9
0.75 1.45
0.875 1.15

8 10 12 14 16 18 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

(b)

E
b
/N

0
 [dB]

P
b

 

 
a=0.625
a=0.75
a=0.875
MLSD

a loss [dB] at
Pb = 10−5

0.625 4.1
0.75 6.2
0.875 ∞

Figure 6.1. Performance of Noncoherent SOQPSK-MIL detector
with a) δ = 2◦/symbol and b) δ = 5◦/symbol. The table to the
right of the plot, shows the loss relative to MLSD at Pb = 10−5 for
each value of a.
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Figure 6.2. Performance of Noncoherent SOQPSK-TG detector
with a) δ = 2◦/symbol and b) δ = 5◦/symbol. The table to the
right of the plot, shows the loss relative to MLSD at Pb = 10−5 for
each value of a.
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Figure 6.3. Performance of Noncoherent GMSK with BT = 0.3
detector with a) δ = 2◦/symbol and b) δ = 5◦/symbol. The table to
the right of the plot, shows the loss relative to MLSD at Pb = 10−5

for each value of a.
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Figure 6.4. Performance of Noncoherent GMSK with BT = 0.25
detector with a) δ = 2◦/symbol and b) δ = 5◦/symbol. The table to
the right of the plot, shows the loss relative to MLSD at Pb = 10−5

for each value of a.
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3 different values of a were chosen to establish a relation between this design

paramater and performance. δ = 2◦/symbol and δ = 5◦/symbol were the 2 values

chosen for δ.

Table 6.2. Loss in dB for noncoherent systems with phase noise of
δ = 2◦/sym. at Pb = 10−5.

Modulation Scheme a = 0.875 a = 0.75 a = 0.625
SOQPSK-MIL 1.15 1.45 1.9
SOQPSK-TG 2.3 2.4 3.1
GMSK with BT = 0.3 0.90 0.95 1.15
GMSK with BT = 0.25 1.2 1.25 1.6

Table 6.2 summarizes the loss in dB for noncoherent detectors for δ = 2◦/symbol.

For the moderate value of δ = 2◦/symbol, both the SOQPSK-MIL and GMSK

noncoherent detectors show similar performance, SOQPSK-TG performs signifi-

cantly worse. Some of this degradation in performance for noncoherent SOQPSK-

TG detector could be attributed to the 0.2 dB [28] loss due to the PT approxi-

mation. Also, the loss grows large as a decreases. The best value for a was found

to be 0.875. The performance curves for GMSK are relatively close together com-

pared to the SOQPSK curves. The loss measured relative to MLSD at Pb = 10−5

for SOQPSK-MIL, GMSK and SOQPSK-TG was found to be 1.15, 0.9 and 2.3

dB respectively.

Table 6.3. Loss in dB for noncoherent systems with phase noise of
δ = 5◦/sym. at Pb = 10−5.

Modulation Scheme a = 0.875 a = 0.75 a = 0.625
SOQPSK-MIL ∞ 6.2 4.1
SOQPSK-TG ∞ ∞ 9.8
GMSK with BT = 0.3 ∞ 3.05 2.0
GMSK with BT = 0.25 ∞ 3.1 2.85

Table 6.2 summarizes the loss in dB for noncoherent detectors for the more
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severe value of δ = 5◦/symbol. The loss measured relative to MLSD at Pb = 10−5

for SOQPSK-MIL, GMSK and SOQPSK-TG was 4.1, 2.0 and 9.8 dB respectively.

Only the GMSK noncoherent detector perfoms satisfactorily, for this case with

a = 0.625. This implies that as the severity of phase noise increases, a should be

chosen to be low, so as to better track phase change.
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Chapter 7

Serially Concatenated Systems

with Iterative detection

7.1 Introduction

Extensive research has been done in the recent years to design modulation

and coding schemes with performance close to the theoretical Shannon capacity

limits. Using the same ingredients as turbo codes [7] (convolutional encoders

and interleavers), serially concatenated convolutional codes have been shown to

yield performance comparable and in some cases superior, to turbo codes [6]. In

this chapter we investigate the performance of reduced-complexity noncoherent

detectors for SOQPSK and GMSK (the reduced complexity designs are used in

the CPM soft-input soft-output (SISO) modules) in serially concatenated coded

systems with iterative detection.
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7.2 System Description

The block diagram of the system is shown in Figure 7.1. This is the system

with SOQPSK as the inner code; when GMSK is used as the inner code a precoder

would not be needeed and the SOQPSK SISO would be replaced with a GMSK

SISO. The information bits an are first passed through a convolutional encoder

and interleaved.

an ∈ {0, 1}

r(t)r(t)

ân ∈ {0, 1}
K1

K2 Π

Π

Π-1

CC

CC

ENCODER

SISO

SISO

AWGN
CHANNEL

SOQPSK

PRECODER CPM
MODULATOR

Figure 7.1. Block diagram of serially concatenated system with SO-
QPSK as inner code.

The outer code is the optimal rate 1
2
, 4-state convolutional code with generator

polynomials g1 = [1 0 1] and g2 = [1 1 1]. This is the same code as was used

in [24]. The S-random interleaver [12] (labeled as “Π” in the block diagram) is

used to increase the coding gain and improve the overall system performance. The

interleaver size should be chosen so as to maximize gain and at the same time not

increase decoding complexity and latency by a large factor. The interleaver that

we use has S = 32 and a block size of N = 2048. The interleaved bits are input to

the CPM modulator (cascade of the precoder and modulator in case of SOQPSK).

The received signal is demodulated and decoded in an iterative fashion by
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soft-input soft-output (SISO) modules from [26] and [5] for CPM and the CC,

respectively. These are discussed in more detail later in this chapter. In order to

model a practical reduced-complexity implementation, we use “max-log” versions

of these SISOs. The soft information exchanged between the two SISOs is in the

form of log-likelihood ratios and is scaled by the gains K1 and K2 to improve

performance [20, 24]. For SOQPSK-MIL we select K1 = 0.75 and K2 = 0.75 [24],

and for SOQPSK-TG and GMSK we select K1 = 0.8 and K2 = 0.75. The

unconnected CC SISO input in Figure 7.1 is zero, and the lower input to the

CPM SISO is initialized to zero for the first iteration. For all simulations in this

chapter the number of iterations is Nit = 5.

7.3 SISO algorithm

The “max-log” version of the SISO algorithm from [5] is briefly summarized

here. The SISO module is a four-port device with two inputs and two outputs

as shown in Figure 7.2. It accepts as inputs the probability distributions of the

information bits P (a, I) and code symbols P (c, I) of the code trellis and outputs

P (a,O) and P (c, O) which are the updated versions of these distributions based

on the code constraints.

CC

SISO

P(c,I)

P(a,I)

P(c,O)

P(a,O)

CPM

SISO

r(t)

P(a,I) P(a,O)

Figure 7.2. The CC and CPM SISO modules.

After the trellis is organized the algorithm makes forward and backward re-

cursions to update metrics associated with each trellis state and then uses these

metrics to compute output probability distributions. The state metrics in the

50



forward recursion are obtained by

Ak(Ẽk) = Ak−1(S̃k−1) + Pk[ãk; I] + Pk[c̃k; I] (7.1)

where k = 1, 2, · · · , n. n is the length of the block over which the state metrics

are computed. Among the several branches ending at state Ek, the survivors

(branches having the maximum metric) of the path metrics are used for cumulative

metric update, which is why the algorithm is referred to as the “max-log” version.

This is similar to the VA. The initial condition of A0(·) = 0 is assumed. Likewise,

the state metrics for the reverse recursion are obtained by

Bk(S̃k) = Bk+1(Ẽk+1) + Pk+1[ãk+1; I] + Pk+1[c̃k+1; I] (7.2)

where k = n − 1, · · · , 0. The initial condition of Bn(·) = 0 is assumed. The

output probability distributions P̃k(c
j;O) and P̃k(a

j;O) for the jth bit within

each symbol at time k are computed as

Pk(ak;O) = Ak−1(S̃n−1) + Pk[a
j; I] + Pk[c

j; I] + Bk(Ẽn). (7.3)

Similar to the computation of A and B, there will be several branches which

have the same input bit aj (or code word cj) and we select the branch which has

the highest metric.

7.4 Reduced complexity CPM SISO Module

The CPM SISO is connected in series with the CC SISO, it takes as input

the received signal (instead of the probability distribution of code words) and the
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input bit probability distribution (from the CC SISO) and outputs the update for

the information bit probability distribution based on the CPM trellis.

In order to view CPM as a code, the length-T segments of the waveform are

regarded as “codewords.” The probability distribution for the codeword is then

replaced by

Pk[ck, I] = Re{e−jθn−Lzk(α̃k)} (7.4)

where z(·) is the sampled matched filter output defined by (3.9).

In case of the noncoherent CPM SISO it metric is be replaced by

Pk[ck, I] = Re{Q∗n(S̃n)e−jθn−Lzk(α̃k)} (7.5)

where Q(·) is as described in Chapter 5 and updated using (5.3). The update for

Q(·) is done only in the forward recursion.

7.5 Performance

In this section we look at the simulation results for coherent and noncoherent

coded systems. There are no termination bits added anywhere in the simulations,

and the decoder state metrics are initialized to zero for each iteration. It was found

in [21] that large coding gains were possible when the number of iterations were

increased from 1 to 3, and beyond 5 iterations performance does not significantly

improve. More than 5 iterations only add to the system latency and so we chose

to have 5 iterations for simulations. The choice of interleaver size of 2048 and 5

iterations allows us to compare the performance of SCC GMSK system to that of

SOQPSK-TG in [29].

Figure 7.3 shows the performance of coded SOQPSK and GMSK systems. It
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can be observed that the performance of SOQPSK-TG is 0.2 dB inferior to that

of SOQPSK-MIL at Pb = 10−5 and GMSK with BT = 0.25 is 0.06 dB worse when

compared to GMSK with BT = 0.3. This is obvious as SOQPSK-TG and GMSK

with BT = 0.25 are more bandwidth efficient than SOQPSK-MIL and GMSK

with BT = 0.3 respectively and have smaller minimum distance in the uncoded

case.
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Figure 7.3. Performance of coded a) SOQPSK and b) GMSK sys-
tems.

The gains for each coded configuration are listed in Table 7.1. SOQPSK-

TG and GMSK with BT = 0.25 have higher coding gain when compared to the

less bandwidth efficient schemes. Thus we conclude that more bandwidth-efficient

modulation achieves higher gain in coded systems, this conclusion was also reached

in [24] for coded SOQPSK.

Figures 7.4 and 7.5 show the performance of noncoherent SOQPSK and GMSK

systems with no phase noise. The forgetting factor a was chosen to be 0.875 for

all the noncoherent cases. It was found in the previous chapter that this value
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Table 7.1. Coding gains for serially concatenated SOQPSK and
GMSK.

Modulation Scheme Gain in dB
SOQPSK-MIL 7.35
SOQPSK-TG 7.72
GMSK with BT = 0.3 7.46
GMSK with BT = 0.25 7.53

of a is optimum for low to moderate phase noise. Even in severe phase noise we

choose a for coded systems to be 0.875 since Eb

No
is low enough to make thermal

noise the dominant impairment.
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Figure 7.4. Coded noncoherent a) SOQPSK-MIL and b) SOQPSK-
TG with no phase noise.

Figures 7.6 through 7.9 show the performance of noncoherent SOQPSK and

GMSK systems with phase noise. The phase noise model is the one discussed in

section 6.2. As in the previous chapter δ = 2◦/symbol and δ = 5◦/symbol were

the 2 values chosen for δ.

As in the case of uncoded systems, the benchmark for comparing the perfor-
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Figure 7.5. Coded noncoherent a) GMSK (BT = 0.3) and
b) GMSK (BT = 0.25) with no phase noise.
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Figure 7.6. Coded noncoherent a) SOQPSK-MIL and b) SOQPSK-
TG with δ = 2◦ /symbol.
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Figure 7.7. Coded noncoherent a) GMSK (BT = 0.3) and
b) GMSK (BT = 0.25) with δ = 2◦ /symbol.
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Figure 7.8. Coded noncoherent a) SOQPSK-MIL and b) SOQPSK-
TG with δ = 5◦ /symbol.
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Figure 7.9. Coded noncoherent a) GMSK (BT = 0.3) and
b) GMSK (BT = 0.25) with δ = 5◦ /symbol.

mance of noncoherent detectors is coherent detection. Table 7.2 summarizes loss

in dB at Pb = 10−5 for noncoherent detectors for different values of δ.

Table 7.2. Loss in dB for noncoherent (coded) systems at Pb = 10−5.
Modulation Scheme δ = 0◦/sym. δ = 2◦/sym. δ = 5◦/sym.
SOQPSK-MIL 0.68 0.54 1.40
SOQPSK-TG 0.79 0.71 1.88
GMSK with BT = 0.3 0.50 0.55 1.03
GMSK with BT = 0.25 0.61 0.71 1.17

It can be seen that the SOQPSK-MIL and GMSK with BT = 0.3 have almost

identical performance with a moderate phase noise of δ = 2 and GMSK with

BT = 0.3 is slightly better for the noncoherent case with no phase noise. Also

SOQPSK-TG and GMSK with BT = 0.25 have identical performance for δ =

0◦, 2◦.

For the more severe case of phase noise, when δ = 5◦, the noncoherent GMSK

detectors perform better than noncoherent SOQPSK detectors. GMSK with
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BT = 0.3 has the best performance with a loss of 1.03 dB with respect to coherent

detection. It is clearly the best modulation scheme that can be used for coded

noncoherent detection as it has good peformance in cases of moderate to severe

phase noise.
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Chapter 8

Conclusions

We developed reduced complexity coherent detectors for full response and

partial response SOQPSK and GMSK. We proposed a noncoherent detection al-

gortihm which can be used in both uncoded and coded systems with iterative

detection and applied it to build noncoherent detectors for these two modulation

schemes. We used a popular phase noise model to simulate a channel with vary-

ing carrier phase and compared the performance of both noncoherent detectors

for coded and uncoded systems. We observed that the peformance of GMSK

noncoherent detectors is better overall when compared to SOQPSK noncoherent

detectors. The key contributions of this work can be summarized as follows.

8.1 Key Contributions

1. Reduced complexity coherent detectors for GMSK were developed. Pulse

truncation and decision feedback were extended to GMSK with BT = 0.25

and the reduced complexity detector with 1/8 as many trellis states as the

optimal detector was found to peform within 0.01 dB of the optimal coherent
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detector.

2. A noncoherent detection algorithm which can be used for uncoded and coded

systems was presented and was applied to GMSK. In the uncoded case

SOQPSK-TG and GMSK with BT = 0.25 (PT) have a degradation of 0.75

dB and for coded systems the loss at Pb = 10−5 was 0.69 and 0.71 dB

respectively.

3. It was found noncoherent GMSK detectors in uncoded systems perform

significantly better than noncoherent SOQPSK detectors in cases of severe

phase noise. When the standard deviation δ of phase noise is 5◦/symbol,

the peformance degradation for GMSK with BT = 0.3 and 0.25 is 2.0 and

2.85 dB respectively whereas for SOQPSK-MIL and TG it is 4.1 and 9.8

dB respectively. In cases of low to moderate phase noise SOQPSK-MIL

performs almost as well as GMSK.

4. The reduced complexity techniques were used to build noncoherent detec-

tors for coded systems. Noncoherent SISO modules for SOQSK and GMSK

was developed, in coded systems it was found that the performance of non-

coherent detectors for SOQPSK and GMSK in low to moderate phase noise

is almost identical (loss of 0.55 dB for SOQPSK MIL and GMSK with

BT = 0.3, loss of 0.71 dB for SOQPSK-TG and GMSK with BT = 0.25).

For severe phase noise, GMSK performs slightly better in coded systems

(loss of 1.40 dB for SOQPSK-MIL and 1.03 for GMSK BT = 0.3).
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8.2 Future Work

We investigated the performance of noncoherent coded systems with a rate 1
2

convolutional code with generator polynomials g1 = [1 0 1] and g2 = [1 1 1] as

they are widely used. SOQPSK and GMSK performance with other convolutional

codes as outer codes should be studied in future. Even more bandwidth efficient

GMSK schemes (with lower values of BT ) could be investigated.

Other reduced complexity techniques such as the PAM decomposition have

not been applied to GMSK so far and it is an area for future work.
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