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Abstract 

 
The use of Ground-penetrating Radar (GPR) for geological exploration, among 

other applications, is gaining widespread acceptance. Specifically, radars are being used 

to characterize multilayered media. To characterize surface and subsurface layers from 

recorded radar data, we are faced with the problem of detecting weak signals buried in 

the sidelobes of stronger reflections. Conventional windowing techniques can be used to 

reduce sidelobes; however, they attenuate the lower frequencies that contain most of the 

information about the deeper structure of the multi-layered target. The primary objective 

of this research is to develop a signal processing algorithm to minimize range sidelobes 

for the enhancement of subsurface features. We also wish to extend the algorithm to 

characterize the constituents of the subsurface layers in terms of an equivalent electrical 

parameter called Permittivity.  

 The GPR data are corrupted with noise, scattering components and losses due to the 

random nature of the underlying subsurface and due to the attenuation of high frequency 

components through subsurface layers. It has often been shown that signal processing 

schemes that incorporate the underlying physical phenomena that generated the measured 

signal (also called the Model Based Approach) offer better performance in terms of a 

minimum variance estimate. To this end, we undertook the study on model based 

techniques for the purpose of signal enhancement and data inversion. Specifically, we 

analyzed the performance of Regression based techniques (such as the Gauss Newton 

method) and Spectral Estimation techniques (MUSIC) to achieve our objectives. In this 

work, we present the results of our study through simulations and tests conducted on 
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actual radar data. Finally, we have also developed a Graphical User Interface for the 

inversion algorithm using MATLAB, the details of which have also been explained in 

this report. 
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Chapter 1  
 

Introduction 
 
1.1 Motivation 
 
 NASA has structured the Mars Exploration Program (MEP) [1] for a series of 

highly ambitious missions to Mars over the next decade. The MEP plans to send several 

landers/orbiters to Mars to achieve some of the following objectives:  

1. Increase the understanding of the availability and amount of water on Mars. 

2. Identify the composition of rocks and soils within the Martian surface. 

3. Determine the nature of geological processes from surface morphology. 

4. Improve understanding of the Mars climate by analysis of in-situ materials. 

   In order to achieve these objectives, we need intelligent remote sensing techniques. 

In this regard, NASA designed the Mars Instrument Development Project (MIDP) to 

develop instruments that can be deployed on the Martian surface to gather geological 

data.  

1.2 Radars in Remote Sensing 
 
  The use of radars in remote sensing of the environment is well known [2]. The 

original purpose of radars was to detect the presence of targets. However, with 

advancements in technology, radars are now being used to characterize the targets based 

on their constituents. This is commonly known as the EM (Electro-Magnetic) Inversion 

Problem in Radar - where the goal is to estimate the composition of materials using data 

collected by a radar. A Ground Penetrating Radar (GPR) uses electromagnetic waves 
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(typically in the frequency range of 10 MHz to 1000 MHz) to extract information about 

targets.  

  In the field of geology, we come across a fundamental term called stratigraphy, 

which is defined as the physical distribution of rocks and soils beneath the target surface 

under observation. From a radar point of view, stratigraphy refers to the distribution of 

the electrical properties (permittivity and permeability) of materials.   

 The EM wave radiated from a transmitter antenna travels through different media 

(at a velocity governed by the electrical properties of the material), and if it encounters a 

boundary with differing electrical properties, a part of the wave energy is reflected or 

scattered back to the surface, while part of the energy continues to travel downward. The 

amplitude of the reflected signal depends on the dielectric contrast between successive 

media. The radar receiver collects the composite return signal consisting of several 

returns from various layers of different dielectric constants. 

 NASA, in association with the Italian Space Agency, has developed MARSIS 

(Mars Advanced Radar for Subsurface and Ionosphere Sounding) to be tested on the 

Martian surface [3]. This instrument will perform sub-surface sounding of the Martian 

crust. The collected data will then be processed to characterize subsurface features. More 

specifically, scientists are interested to know if water exists on Mars. This forms the 

primary motivating factor for this research, which addresses the two-fold objectives of:  

1. Enhancing the features of the radar signal (to detect subsurface layers); and  

2. Inverse permittivity profiling: Estimating the permittivity (dielectric constant) 

profile of a multi-layered media using GPR recorded data.  
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This necessitates the development of a signal processing scheme that can estimate the 

unknown electrical parameters from a composite signal seen by the radar. From a 

mathematical point of view, this problem is called Parameter Estimation. Figure 1-1 

illustrates the problem statement pictorially. 

 

 

 

 

 

 

 

 

 

 
Figure 1-1  EM phenomenon for a Multilayered target case; A typical permittivity profile 

  

 There are many problems in the analysis of radar data. If the radar measures only 

the reflections from layers with contrasts in permittivity, then it is easy to estimate the 

unknown parameters. However, there are several other factors, such as scattering, 

attenuation and additive noise, that corrupt the return; hence, this is a non-linear problem, 

and without some prior knowledge of the geo-physical structure, it is hard to find a 

solution to this problem. 

           Conventionally, the Fourier (or Inverse Fourier) Transform algorithm is applied to 

the received signal (in frequency domain/time domain) and is converted into the range 
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profile. This composite return may contain weaker signals from deeper layers. The major 

disadvantage of using Fourier transform techniques is the range sidelobes, which can 

mask weaker reflections from deeper layers [4]. Normally, windowing functions can help 

reduce the side lobes of strong reflections. However, the use of these windowing 

functions will attenuate the lower frequencies that contain most of the information about 

the deeper structure of the surface. Hence, it is necessary to develop a signal processing 

algorithm to minimize the range side lobes for enhancement of sub-surface features and 

then reconstruct the permittivity profile.  

 

1.3 The Model-Based Approach 
 

Typically, model-based techniques attempt to estimate the unknown parameters 

by comparing the measured radar target signatures with a mathematical model such that it 

closely follows the underlying physical phenomenon. Figure 1-2 below depicts the model 

based approach to data inversion.  

 

Figure 1-2  The model-based approach for data inversion 
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 Broadly, Model Based Techniques fall under two categories – MMSE 

Minimization and Spectral Estimation. In the MMSE minimization approach, the 

unknown permittivity is estimated based on the principle of minimizing the mean square 

error between the measured and the modeled data. The Gauss Newton Method and 

Kalman Filter algorithm [5] are two well known algorithms in this category. In the 

spectral estimation approach, permittivity is estimated by first estimating unknown 

frequency components in the return signal spectrum and then estimating reflection 

coefficient amplitudes with a likelihood estimator. Well known spectral estimation 

algorithms are the Multiple Signal Classification (MUSIC) algorithm, Minimum norm 

algorithm and the Eigen vector algorithm. In all of these algorithms, it is necessary to 

have a good GPR response model (forward model) that relates model parameters to the 

underlying geophysical phenomenon. 

 In order to model a GPR response, there are a variety of simulation methods. For 

a basic first-order simulation, a simple convolution-based modeling technique is used. 

For more accurate results, the effects of scattering due to random surfaces and the three 

dimensional antenna beam pattern can be obtained using more advanced methods such as 

the Finite Difference Time Domain (FDTD) method, at the cost of complexity and 

computational time. In this research, we have considered the first method: the 

convolution-based approach.  

 

1.4 Organization 
 

This report is organized into six chapters. The objectives and principles behind 

this research are explained in detail in Chapter 2, while Chapter 3 addresses the problem 
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of enhancement of subsurface layers using FFT and a high resolution algorithm called 

MUSIC. In Chapter 4, we address the problem of inverse permittivity profiling. A few 

methods for data inversion are presented here. Chapter 5 describes the testing of the 

inversion algorithm on actual FMCW radar data collected during field experiments in 

Antarctica and Greenland. The algorithm was also tested in the sandbox facility of the 

Radar Systems and Remote Sensing Lab (RSL) of the University of Kansas. The results 

of this test are also presented. Chapter 6 describes the Graphical User Interface (GUI) 

developed for the model-based inversion. The concluding chapter summarizes our work 

and contains some recommendations for further research. 
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Chapter 2  
 

The Problem Statement 
 
     Broadly, we are dealing with the study of a geophysical phenomenon - namely, 

the reflection of EM waves due to dielectric contrast between media. To address the 

objectives of this work, the overall problem has been broken down into four major steps 

[6]. 

 
1. System parameterization: This involves discovering the set of model parameters  

 whose values completely characterize the system (phenomenon). For the problem at   

 hand, this parameter which characterizes the geo-physical phenomenon is the 

permittivity of multi-layered media. 

 

2. Forward Modeling: This step involves discovering the underlying physical 

phenomenon and deducing a mathematical relationship between the model parameters 

and actual observations. In this research we are dealing with the propagation and 

reflection of EM waves, which are dependent on the underlying permittivity profile.  

 

3. Enhancement of reflectivity profiles:  This forms the primary objective of our work 

where we apply suitable signal processing techniques to obtain high resolution 

reflectivity maps of the radar signal for analysis. This part is discussed in Chapter 3.  
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4.  Inverse Modeling: This involves the use of the actual results of some  

 measurements of the observable parameters to infer the actual values of the model    

 parameters. This problem is addressed in Chapter 4. 

 

2.1  Forward Modeling 
 

  In order to better analyze a geophysical phenomenon, the very phenomenon 

(system) may be modeled (simulated), if we can relate the parameters responsible for the 

phenomenon and the response of the system. In order to model the return signal from a 

multi-layered target, we first consider the propagation of EM waves through dielectric 

media and how they influence the return signal.  

In modeling horizontally layered media, it is a common approach to consider 

plane wave approximation for EM propagation [7]. This means that it is assumed that the 

multiple layers are perfectly planar and that the antenna beam is like a pencil beam, as 

shown in Figure 2-1.   

 
Figure 2-1  Multi-layered target with different dielectric boundaries 
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2.1.1 Permittivity  

The underlying fundamental electrical parameter responsible for the reflection of 

EM waves is called Permittivity or the dielectric constant of the material. From an 

electromagnetics point of view, permittivity is a measure of how much a medium changes 

to absorb energy upon the influence of an electric field. For good dielectric materials, 

permittivity is a real quantity and is determined by the displacement current flowing 

through it. In the case of a lossy medium, conduction currents also flow through the 

material, and we define a complex value for permittivity as [7] :  

''' jε−ε=ε                                                  (2.1) 

where 'ε  is the real part of permittivity and it represnts the capacity of the 

medium to store EM energy. The imaginary part of permittivity, ''ε represents the EM 

energy losses [7] (due to absorptive properties of the medium). In general, permittivity is 

a function of frequency, but for the purposes of simplicity, we will assume a frequency- 

independent situation for our problem. 

Every material on earth has a unique value of permittivity. If not for the concept 

of permittivity, we wouldn’t be able to distinguish between ice, water and snow, which 

are just different forms of the same material. Ice has a permittivity of around 3.14, it is 

around 80 for water, and for snow, it can vary depending on its density and moisture 

content. Hence, the underlying permittivity is responsible for each of these materials 

interacting in a different way with the same incident EM wave. As will be seen in the 

next chapter, radars exploit this phenomenon and are successfully being used in remote 

sensing to characterize materials.   
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2.2  Wave Propagation Phenomena 
 
 When an EM wave propagating down strikes layers of differing dielectric 

constants, the following phenomena occur:  

2.2.1 Reflection & Transmission  

Whenever an EM wave encounters a dielectric interface, a part of the incident 

signal is reflected back to the source and a part of it propagates into the layer. The 

reflected signal amplitude is proportional to the reflection coefficient at the dielectric 

interface defined as the ratio of the positive directed field divided by the negative directed 

field or alternatively, the ratio of the reflected wave divided by the incident wave. In 

mathematical terms, the reflection coefficient denoted by kΓ  is defined as [7] :  

   ( ) ( )1 1k k k k kε ε ε ε+ +Γ = − +                         (2.2) 

where kε  is the permittivity of layer k and 1k+ε represents the permittivity of the next 

layer. The portion of the EM wave transmitted is quantified by the Transmission 

coefficient ( kT ) and is mathematically related to permittiviy as : 

2

1 14 + +
 = + k k k k kT ε ε ε ε                             (2.3) 

 

Hence, a positive value of reflection coefficient indicates an increasing dielectric profile 

and a negative value indicates a decreasing profile at the interface. 
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2.2.2  Attenuation 

   As seen earlier, EM energy returns to the radar because of reflection. However, 

part of the EM energy that is not reflected propagates further into the medium and can get 

attenuated. Given below are some of the phenomena that may attenuate an EM signal. 

2.2.2.1 Scattering 
 

Scattering is a phenomenon that occurs due to the interaction of EM waves with 

irregular (rough) surfaces. Hence we have the concept of surface scattering. The second 

type of scattering is called volume scattering. Volume scattering occurs because the 

multiple target layers are not homogenous. Rather, the layers are a mixture of particles 

suspended in a background medium. In our analysis, the effects of attenuation due to 

scattering have been neglected for simplicity.  

2.2.2.2  Absorption 
 

Certain materials have the property of absorbing EM radiation when incident on 

them. Hence, the EM wave is attenuated. From an electrical point of view, we normally 

include an “Absorption coefficient” to model the attenuation due to absorption [8]. This 

coefficient depends on the particle size, wetness percentage, type of background material, 

etc. 

2.2.2.3  Spreading 
 

 When a power of tP is transmitted by an antenna having gain tG , the power at a 

distance R from the antenna is given by  

r t t 2

1P P G
4 R

 =  π 
                                               (2.4) 
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Here, the term in brackets denotes the free space spreading loss due to the antenna beam 

pattern. Hence, for a two way distance of 2R, there is a loss of ( )2R4
2

π
 due to 

spreading.  

2.2.3  Modeling Target Response 

If all of the above factors can be accurately determined, we can essentially 

construct the radar return using simulations. This is called the Forward Modeling of 

Radar Signal. So far, we looked at various factors that can influence radar return and their 

mathematical interpretation. Now, we will look at combining all these factors to model 

the overall composite signal that reaches the radar receiver. Figure 2-2 below gives a 

simplified notion of the discussion thus far.  

 

        

 

  

 

 

Figure 2-2 Block diagram of the forward modeling problem 

 
The response of a system to an impulse is called the impulse response of the 

system. The impulse response of a multi-layered target can be modeled from its 

contributing parameters discussed above. In order to model the physical phenomenon, a 

widely accepted method is the convolution-based scheme based on one-dimensional 

modeling [4]. This means that, if we denote the transmitted signal as x(t) and the target 

response as h(t), then the received radar signal is simply the convolution of x(t) and h(t). 

Transmitted EM Signal 
  X(t) 

Target Response 
   h(t) 

Received 
Signal 
 y(t) 
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This is based on the assumption that the plane wave propagation or the ray propagation 

model holds good to represent the phenomenon. Convolution in the time domain 

corresponds to multiplication in the frequency domain. Hence, we can also write: 

Y(f) = H(f) . X(f)                                       (2.5) 

where each of these terms represents the transfer function of its corresponding impulse 

response. A graphical illustration of the overall forward modeling problem [10] is 

presented in figure 2-3.  

 

Figure 2-3  Simulation Flow chart 

 

There are other advanced techniques for forward modeling, such as the Finite 

Difference Time domain (FDTD) which takes into account phenomena such as multiple 

reflections, interferences, geometrical spreading, ray focusing, phase shifts, etc., which 

are ignored by the convolution model seen earlier [11]. However, these techniques  
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require a large computing time, complicating simple implementation. Hence, in this work 

we will focus on the convolution model for simplicity. 

We now present simulations in MATLAB for a Frequency Modulated Continuous 

Wave (FMCW) radar to illustrate the concept of forward modeling. The first step is to 

model the return signal from an FMCW radar. 

 
2.3 FMCW Radar Modeling 
 

The FMCW radar transmits a frequency sweep, also called a chirp signal [12]   

 (Figure 2-4). The reflected signal is basically an attenuated and frequency shifted version 

of the transmit signal.  

 

Figure 2-4  FMCW - Chirp Waveform 

 
The composite reflected signal is mixed with a copy of the transmitted signal to 

determine the range of the target. The difference between the transmitted and the received 

signal is called the IF Signal or Beat Signal and the shift in received frequency is called 

the Beat Frequency, which is directly proportional to the range to the target. The 

instantaneous frequency of the transmit chirp is given by: 



  15

( ) 0f t f t= +α                                            (2.6) 

where 0f is the starting frequency of the chirp and α  is called the chirp rate, defined as 

the ratio of bandwidth (B) to the sweep duration (T).                                                          

The received signal can be mathematically modeled from a simplified model of the 

FMCW radar as depicted in Figure 2-5. 

 

 

 

 

 

 

 

 
Figure 2-5 Simplified Model of an FMCW Radar 

                    

The signal at the output of the low pass filter may be derived for a multi-layered target as: 

( ) ( ){ }
k 1L 1

beat k k j 0 k k k
k 0 j 1

V A T cos(2 f 2t W
−−

= =

τ = Γ π τ + ατ − τ +∑ ∏       (2.7) 

where all terms carry the same meaning as discussed earlier. We account for system noise 

by modeling it by a Gaussian random variable ( W ).  

 The Fast Fourier Transform (FFT) algorithm is applied on the beat signal 

( )beatV τ  to obtain the frequency response of the target, which is also called the Range 

profile or a plot showing the variation of received amplitude as a function of target 

distance.  

( )beatV t
( )rV t

( )tV tTransmitter  
 

Target 

X

Low Pass 
Filter 
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Figure 2-6  A Multilayered Profile 

 
         To demonstrate the modeling of an FMCW radar, let us assume a multilayered 

dielectric profile as depicted in Figure 2-6 shown above. Table 2-1 below shows the 

parameters considered for MATLAB simulation along with the geophysical profile 

vectors rε  and Z.  

Table 2-1  Radar parameters and geophysical parameters for FMCW radar modeling 

 

The beat frequencies corresponding to their respective distances are also indicated in the 

table above. Figure 2-7 below shows the range profile obtained by modeling the above 

profile. We can see peaks corresponding to beat frequencies 400 Hz and 1785.6 Hz, 

which are identical to the mathematically calculated beat frequencies.  

2z 2rε = 3 

3rε  = 6 

1rε =1 
1z

5 cm 

10 cm 
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Figure 2-7  Range Profile obtained by taking IFFT  
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Chapter 3  
 

Enhancement of sub-surface features 
 

 As seen in Chapter 2, the FFT on the return signal yields the signal spectrum (also 

called the range profile), which shows peaks occurring at their corresponding depths. 

However, Fourier-based techniques for spectral analysis have a fundamental limitation in 

that their resolution is strictly dependent on the bandwidth of operation of the radar 

system and hence, in the case of bandwidth-limited systems, FFTs offer very poor 

resolution, thus making it difficult to detect the presence of deeper subsurface layers. To 

illustrate this problem, we consider a 5-layer profile (Table 3-1)  

Table 3-1  Five layer profile to demonstrate the problem of enhancement 

 
 

 
 
 
 
 
 
 
 
 

    
  
 

     Using the forward model of (2.7) with an SNR of 10 dB, the radar received signal was 

modeled in MATLAB and the range profile using the FFT is shown plotted in Figure 3-2 

below. 

Bandwidth 3 GHz 

Start Frequency 2 GHz 

Sweep time 10 ms 

Permittivity vector rε  [1    5   4.5   3   3.7 ] 

Depth vector Z (cm) [50   7  20  30]  

Range resolution 5 cm (free space) 
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Figure 3-1 Range Profile of Table 1 plotted using FFT 

 
It is seen that the dielectric contrast at the second interface results in a weak reflection 

and is buried under the sidelobes of the surface return, which is much stronger than the 

second reflection. Hence, target identification using the FFT is not a very effective 

method in the following cases: 

1. Geophysical profiles with subtle variations in permittivity  

2.  Bandwidth limited (or comparatively small bandwidth) radar systems with poor 

resolution capabilities 

Hence, we find the need for techniques with good resolution capability to obtain 

improved reflectivity profiles.  

 
3.1  Parametric (Model - Based) Spectral Estimation 
 
          Parametric spectral estimation methods estimate unknown parameters from the 

given data by incorporating a model for the observed process into the estimation 

algorithm. It is for this reason that parametric methods promise significant improvement 

Second reflection masked by the 
sidelobes of  the first 
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in resolution of the frequency estimate and can be applied to the problem under 

consideration [13].  

Commonly, for radar problems, a harmonic model is assumed since it is well known 

that radars measure a composite summation of sinusoids of different frequencies 

(depending on the distance traveled by the signal) embedded in noise. Schmidt [14] came 

up with a super-resolution frequency technique called MUSIC, which stands for MUltiple 

SIgnal Classification. This method is an extension of the Pisarenko Harmonic 

Decomposition method [15], which works on the principle that it is possible to estimate 

unknown sinusoidal components embedded in noise from the eigenvector corresponding 

to the minimum eigenvalue of the autocorrelation matrix by exploiting the orthogonality 

of signal subspace and the noise subspace. The first step in implementing MUSIC for 

high resolution frequency estimation is the development of a good model for the 

observed data. Typically, the radar received signal can be modeled as: 

( )k

P
j.f ( )

k
k 1

x(n) A e w nω

=
= +∑                                   (3.1) 

where n = 1,2… N-1, with N being the number of samples of the observation, Ak denotes 

the signal amplitude from layer k modeled using (3), P represents the number of 

sinusoids in the signal x(n), w(n) denotes additive white Gaussian noise with mean zero 

and variance 2σ , and ( )kf ω  denotes the term dependent on the unknown frequency 

variable and takes a functional relationship depending on the type of radar used.  As seen 

in Section 2.3, for an FMCW radar, this function can be written in terms of time delays as 

( ) ( )k 0 k k kf f 2tτ = τ +ατ −τ                  (3.2)                 
  
For an FMCW radar, time delay and beat frequency are related as  
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k
k

T
2 B
ω

τ =
π

                                                      (3.3) 

 
where T is the duration of the frequency sweep and B is the bandwidth of operation. 

Hence we have an equivalent function in kτ .  

   Once the signal model has been formulated, MUSIC uses the eigen structure of 

the correlation matrix of the measured data for spectrum estimation.  

   We write the signal autocorrelation function as 
 

H
xR E xx =                                                         (3.4) 

 
where E [.] denotes the ensemble average. Since it is known that the received data is the 

sum of sinusoids embedded in noise (assumed to be uncorrelated with the signal), the 

data correlation matrix may be subdivided into two parts as 

x s nR R R= +                                                    (3.5) 
 

where sR is the autocorrelation matrix due to signal and nR is the noise autocorrelation 

matrix. Since we have assumed noise of variance 2σ  added to the signal, the entries of 

the noise autocorrelation matrix will ideally be equal to the variance of noise. We then 

decompose xR into its corresponding eigen values i( 's)λ and eigen vectors ( )iV 's , with 

the eigen values arranged in decreasing order:  

2
1 2 P P 1 P 2 M..... .....+ +λ ≥λ ≥ ≥λ ≥λ =λ = λ =σ                             (3.6) 

 
where xR is of dimension M x M and p represents the number of complex exponentials 

in the received data. It is easy to find p from the eigen values of xR . Furthermore,                              

the eigen vectors corresponding to the minimum eigen values are orthogonal to those of 
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the signal vectors. Taking a Fourier transform of the coefficients in iV , we have [15] 

( )
1

0
( )

−
−

=

= =∑
M

j jk H
i i i

k
v e v k e e vω ω

                                    (3.7) 

 

(where 1, 2 ,....,= + +i p p M ) will yield zeros at the frequencies of complex exponentials, 

or conversely, the function  

( )
2

1

1

= +

=

∑
j

m usic M
H

i
i p

P e
e v

ω                                        (3.8) 

 

will yield sharp peaks at the frequencies of the corresponding frequencies. A weighted 

average of the all-noise eigen vectors is used so that spurious peaks arising out of 

individual noise eigen vectors may be suppressed [15].  

 
3.2  Simulation test results 
 
  The profile of Table 3-1 was applied to MUSIC and the location of the p largest 

peaks are chosen as the unknown frequencies in the signal. Figure 3-2 shows a bar chart 

of the eigen values of xR arranged in descending order. It can be seen that there are 4 

significant eigen values and we chose p to be 4. Figure 3-2 shows the frequency spectrum 

obtained by using (3-8). 
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Figure 3-2 Selecting the number of complex exponentials ‘p’ 

 
Figure 3-3 Range profile of table 3.1 plotted using MUSIC 

 
  Figure 3-3 shows that the resolution obtained using MUSIC is much better than that 

shown in Figure 3-1, which uses the FFT. We see that MUSIC is able to resolve all the 

four peaks very well and gives us an enhanced reflectivity profile.  

To further demonstrate the resolution capability of MUSIC, we consider a 5-layer 

profile (with permittivities of 1, 3.4, 3.7, 2.9, 2.7 varying with depth) and the radar return 

signal is modeled such that the SNR is set to be 0 dB. Figure 3-4 shows the range profiles 

obtained using the FFT and MUSIC methods.   
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Figure 3-4 FFT Vs Spectral Estimation Algorithm for enhancement of Profile 

 

It can be seen that FFT is unable to resolve the reflections due to very small 

permittivity contrasts (3.4 to 3.7 and 2.9 to 2.7). The side-lobes of the stronger reflections 

are clearly masking the weaker returns. The same figure shows the range profile obtained 

using MUSIC, where we find that this technique can effectively be used to enhance weak 

radar returns.  

The performance of MUSIC is limited by the signal to noise ratio of the observed 

data. Simulations were performed on a large number of test cases and it was found that 

MUSIC performs well only for SNRs greater than 5 dB. Low SNRs result in incorrect 

estimates of p and hence, we do not have the “ideal” autocorrelation matrix of (3.5). If 

the estimated number of frequencies is less than the true value p, the frequency 

estimation function does not show all the frequencies in the signal, whereas for estimated 

values greater than p, spurious peaks appear in the spectrum. However, in a practical 

radar measurement, an SNR of 10-15 dB is reasonable and hence MUSIC can be used.    
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The resolution capability of MUSIC holds several applications such as studies 

relating to the sea-ice and snow where we wish to obtain enhanced reflectivity images to 

map the bedrock of ice and to detect faint internal layers of snow. 

Now that the problem of profile enhancement has been addressed using MUSIC, 

we now proceed to the problem of data inversion or inverse permittivity profiling.  
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Chapter 4  
 

Inverse Permittivity Profiling 
 
     Inverse permittivity profiling is a problem where the unknown parameter 

(permittivity) needs to be estimated from the received radar data. More specifically, for 

this work, we are interested in estimating unknown permittivity values given the data 

measured by a Ground Penetrating Radar. This problem is also called Electro-Magnetic 

Inversion or EM parameter Estimation. 

    Typically, inverse problems deal with estimating parameters based on continuous-time 

signals. However, modern radar systems use digital computers to sample and store analog 

waveforms, and hence we have the equivalent problem of extracting parameter values 

from a discrete time waveform or a discrete data set [16]. Mathematically, let us assume 

that the data set [ ] [ ] [ ]{ }1Ny....,,1y,0yY −=  represents the sampled version of the 

observed data, where N is the number of samples in the waveform. This data set depends 

on an unknown parameter m and we wish to determine the set of values m based on the 

data set Y. For the radar data inversion problem, the data set denoted by Y is the data 

obtained from a GPR; m̂ translates into the set of permittivity values ε̂  (permittivity 

values) that we wish to estimate. We will now discuss methods for data inversion. 

 

4.1  Inversion by Layer Stripping 
 

Layer stripping is an elementary approach for data inversion [17]. Let us assume 

that we have eliminated clutter from the observed data. Hence, ideally, we are left with a 
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delayed and attenuated version of the transmitted signal. As mentioned earlier, the Fast 

Fourier Transform (FFT) algorithm is applied on the received waveform to obtain the 

spectrum of the signal. A plot of this signal with respect to the distance axis will show the 

occurrence of peaks at interface locations. Ideally, the amplitudes of these peaks will 

correspond to the reflection coefficients (and transmission coefficients) at their respective 

interface locations. That is, the amplitude of reflected signal at any layer k is given by 

Equation 4.1 as 

kL

k k k j
k 1 j 1

A B T
= =

= Γ∑ ∏                                           (4.1)  

where kB  represents the attenuation coefficient, which accounts for losses due to 

absorption, scattering and spreading. However, modeling the attenuation coefficient 

requires some a priori information regarding the properties of the target. Hence, for our 

inversion problem, we will assume that the lossy part of the medium (which contributes 

to the attenuation coefficient) is known. We also assume that the transmission coefficient 

for the first layer (air) T1 = 1.  The “ideal” amplitude of the surface reflection will be 

1 1TΓ , the subsequent layers will have amplitudes 2 1 2TTΓ ; 3 1 2 3TT TΓ and so on. 

The locations of their corresponding distances are directly related to their respective time 

delays. If 
0Z represents the height of the surface from the antenna and kz  represents the 

depth of the kth layer in a multi-layered media of L layers, the two-way time delay 

kτ experienced by the signal is given as 

  kτ = ( )1
1

2
−

=

 
+ − 

 
∑

k

o i i i
i

z z z
c

ε                                  (4.2) 
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 The idea in layer stripping is that we first identify the amplitudes ( kA 's ) and the 

locations of interfaces ( kτ ’s) from the range profile of the received signal. Once these 

values are known, it is easy to determine unknown variables (permittivity values) 

recursively using Equations (4.1) and (4.2). 

The first task is the detection of echoes. This is done by setting a reasonable 

threshold amplitude value based on the Signal-to-Noise ratio (SNR) of the system. All 

amplitudes that cross this threshold are picked as valid returns. The positions 

corresponding to these returns constitute the distances (delays). These values are used to 

recursively estimate the permittivities.   

However, since the detection of echoes is performed without any reference to a 

geophysical model, this approach suffers from the following limitations. 

1. Missed Peaks: Since the detection of echoes is done by setting a threshold by looking 

at the range profile, the value of the threshold is important. In certain profiles consisting 

of small dielectric variations, the reflection at that interface could be very small and could 

be embedded in noise. Hence, without any knowledge of the profile, an arbitrary 

threshold value might cause missing of that peak. Therefore, this leads to an error in the 

estimated permittivity profile. 

2.  False Alarms: In many cases, we might not be able to distinguish between actual 

signal peaks and false alarms – which are unwanted reflections that arise due to the 

presence of random noise or reflections due to clutter/external factors. The selection of 

false alarms as signal peaks can also lead to erroneous permittivity profiles. 

3. Range Sidelobes: To obtain the range profile, the Fourier transform algorithm is 

usually applied on the IF beat signal measured by an FMCW radar. But this method 
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suffers from the problem of range sidelobes. That is, the weaker reflections (smaller 

reflection coefficients) are masked by the sidelobes of stronger reflections. Hence, this 

presents a serious impediment when identifying valid peaks from the range profile for 

data inversion. 

 To illustrate the performance of the layer stripping approach, simulations on an 

FMCW radar are presented here. Consider a geoprofile along with radar parameters as 

tabulated in Table 4-1.  

Table 4-1 Radar and geophysical parameters to illustrate layer stripping  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
The range profile for this multilayered structure was modeled using MATLAB and is 

shown in Figure 4-1 below.  

Bandwidth 6 GHz 

Start Frequency 2 GHz 

Sweep time 10 ms 

Chirp rate  300 GHz/s 

SNR 10 dB 

Permittivity vector rε  [1   1.5  1.9 1.5] 

Depth vector Z (cm) [8     4    8]  
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Figure 4-1  Range Profile obtained using FFT 

From the permittivity vector of Table 4-1, there are four dielectric interfaces and 

hence we see three peaks in the Figure 4-1. As discussed in Chapter 2, the amplitudes 

of these peaks correspond to the reflection coefficient of the interface. To estimate the 

permittivities, we need to set a reasonable threshold. In this case, intuitively, it can be 

seen that a safe value of 0.07 can be chosen based on the relative amplitudes of signal 

and noise. (This is indicated by the dashed line in the same figure). Here, it is 

interesting to note that the interface locations are slightly different from the actual 

locations. This is because the velocity of the EM wave in every layer is different and it 

depends on the permittivity of that particular layer. The interface locations are 

estimated from the change in slope from negative to positive.  From the reflection 

coefficient values, the permittivities can be calculated by recursively using the formulae 

discussed in Chapter 3. The final reconstructed profile is shown in Figure 4-2 below. 
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Figure 4-2  Actual Vs Reconstructed Permittivity Profile 

The importance of setting a reasonable threshold is obvious. To illustrate this, we now 

consider a profile shown in Table 4-2 below to explain the problem of false alarms and 

missed peaks.  

Table 4-2  Profile chosen to illustrate the problem of false alarms and missed peaks 

 

 

 
 
 

 

 Figure 4-3 depicts the range profile modeled as in the previous example. As we 

can see, this data is noisy. The peaks which are checked are valid peaks. To illustrate the 

problem of missed peaks and false alarms, three thresholds marked as 1, 2 and 3 are set 

as shown in the figure. 

Permittivity vector rε  [1      3      3.5     2    2.8] 

Depth vector Z (cm) [50   30    40    40]  

SNR 5 dB 
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Figure 4-3  Range Profile of Table 4.3 with thresholds marked 

If a threshold corresponding to 1 is set, only the first three peaks will be above the 

threshold and hence we miss the last peak corresponding to the return from the last 

interface. This is the problem of missed peaks in threshold detection. Hence, the 

reconstructed profile will not show the last layer.  

 However, if the threshold is set a value given by 2, all four valid peaks will be 

detected and we can invert the profile very well. But, if the threshold is set at the value 

indicated by 3, then several peaks will be detected, apart from the valid peaks. These 

unwanted peaks are called false alarms and these will result in incorrect permittivity 

profiles. 

4.2.1 The Problem of sidelobes: 

 In Chapter 3, we discussed the problem of the FFT’s inability to resolve closely 

spaced reflections because of the masking of weak reflections by the sidelobes of the 

stronger reflections. Thus, the problem discussed above imposes a limitation on the 

 

1 

2 

3 
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robustness of the method. The following example illustrates this point. Let us consider 

a profile as tabulated in Table 4-3 below and the range profile shown in Figure 4-4. 

Table 4-3 Profile chosen to illustrate the problem of sidelobes 

 

 

     
 
 
 

 

 
Figure 4-4 Range profile of table 4-4 

 

Here, we find that, though the SNR of the signal is good, the reflection off the 

second interface is weak and is masked by the sidelobes of the reflection from the first 

layer. Hence, layer stripping fails to detect this buried reflection, and as a result the 

estimated permittivity profile will look distorted.  

Hence, we see that the layer stripping method is useful only when the SNR of the 

signal is good enough and when the peaks can be sufficiently resolved. Also, it requires 

the setting of a reasonable threshold value to distinguish between false alarms and valid 

Permittivity vector rε  [1      3.4   3.7   2.9  3.7] 

Depth vector Z (cm) [50    8   20    30]  

SNR 15 dB 
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peaks. This method is also vulnerable to errors because of the problem of sidelobes 

masking the weak returns. Hence, we find the need for a more robust parameter 

estimation algorithm – preferably one which incorporates the underlying physical 

phenomenon. Nevertheless, the layer stripping technique can be used as a first step to 

get an approximate inverse solution.  

 

4.2  Model Based Inversion 
 

Stergiopoulos [18] suggests that, if the physical phenomenon is incorporated into the 

algorithm, the inversion results are better. Such an estimator, which uses the geophysical 

model to estimate unknown parameters, is called a model-based estimator. The concept 

of model-based estimation was depicted earlier in Figure 1-2. 

      This geophysical model is the forward model which was discussed in Chapter 2. It 

was seen that there exists a non-linear relationship between the observed data and the 

unknown permittivity values. From a mathematical point of view, these types of 

problems may be solved by using non-linear regression techniques based on certain 

criteria. A widely used criterion is the minimization of mean squared error for estimation 

of unknown parameters [19].  

 
4.2.1  MMSE Minimization techniques 

 In this method, we attempt to minimize the squared difference between the 

observed data Y (given by Equation 3.2) and the assumed signal model or noiseless 

data F , which is a function of the unknown parameter m . This concept is illustrated 

in Figure 4-5 [19]. 
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 A fundamental assumption in this approach is that the signal ( )n,mF  is purely 

deterministic. As discussed earlier, due to random noise or model inaccuracies, we 

observe a perturbed version of ( )n,mF , which is denoted as Y . The MMSE estimator 

of m chooses the value that makes ( )n,mF  closest to the observed data ( )nY .  

 

Figure 4-5  The Least Squares Approach 

Closeness is quantified by the least squared error criterion given by Equations (4.3) and 

(4.4) below 

( ) ( )( )∑
−

=
−=

1N

0n

2n,mFnYQ                                    (4.3) 

OR 

( ) ( ) 2n,mFnYQ −=                                        (4.4) 

where the observation interval is assumed to be n = 0, 1 ,…, N-1. The value of m  that 

minimizes Q  is the MMSE estimator of m . The performance of this method depends 

upon the properties of the corrupting noise as well as other external and internal sources 
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of error in the system and in the observation. We will now explore the Gauss Newton 

Method, which is based on MMSE minimization.   

 

4.2.1.1 Gauss Newton Method 
 
 As mentioned earlier, there is a non-linear relationship between the signal 

model and the model parameters. Non-linear least squares problems cannot be solved 

directly; they must first be converted into linear form. The iterative Gauss Newton 

method [17] gives a solution by linearizing the model ( )n,mF  about some nominal 

m and then uses the linear least squares procedure as described in [15,16] .  

( ) ( ) ( )[ ]( )ccmc mmmFmFmF −∇+≅              (4.5) 

where ( )cm mF∇  indicates the matrix of partial derivatives of ( )mF  with respect to 

model parameters evaluated at cmm = . The variable cm  denotes the set of current 

model parameters. Revisiting Equation (4.3), we can derive the solution of the non-linear 

problem as follows.   

 ( ) ( )( )∑
−

=

−=
1N

0n

2n,mFnYQ                       (4.6) 

      ( ) ( ) [ ] [ ]
0 0

2
N 1

0
n 0

m m m m

F m, n F m, n
Y n F m, n m m

m m

−

=
= =

 ∂ ∂
≈ − + −  ∂ ∂ 
∑ (4.7) 

To initiate the algorithm, we begin with a starting guess for the model parameters, 

denoted by 0m . Proceeding further, Equation (4.7) can be written as    
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 ( ) ( ) ( ) T

0 0 0 0Q Y F m H m m H m m= − + −    *  ( ) ( ) ( )0 0 0 0Y F m H m m H m m− + −                          

                                                                                                                                        (4.8) 

where we define H as the matrix of partial derivatives of the modeled data with respect to 

the model parameters m. Now since we have a linear model, we can use the theory of 

least squares error minimization where the model updating is obtained by back projecting 

the residual i.e., ( )mFY −  onto the model space to obtain the solution. Equation (4.8) 

can be solved to obtain the least square error estimate as: 

( ) ( ) ( ) ( ) ( )1T T
0 0 0 0 0 0m̂ H m H m H m Y F m H m m

−
= − +            (4.9) 

    ( ) ( ) ( ) ( )1T T
0 0 0 0 0m H m H m H m Y F m

−
= + −                       (4.10) 

This can be iterated so that 

     k 1 km m+ = + ( ) ( ) ( ) ( )1T T
k k k kH m H m H m Y F m

−
−                       (4.11) 

4.2.1.2  Limitations of the Gauss-Newton Technique 
 

Methods of parameter estimation such as the Gauss-Newton MMSE algorithm 

and Minimum Variance Unbiased (MVU) estimate algorithm, which are iterative 

procedures, suffer from convergence problems. As discussed earlier, the algorithm 

produces an estimate m̂  that minimizes the mean squared difference Qbetween the 

observed and the model parameters. To find the optimum estimate, the algorithm is 

initiated with a starting guess 0m  or, for convenience, ( )1m  and then we sequentially 

find ( ) ( ) ...,m,m 32  in such a way that the sequence finally converges to m̂ - which 
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yields the minimum mean squared error. This process is called convergence and the value 

of MMSE obtained is called the global minimum.  

 In simple mathematical terms, a global minimum of a function is the lowest 

value that the function achieves. In our case, this function is the error function that we are 

trying to minimize. If we assume the function to be a surface, then a global minimum is 

the lowest point on that surface. MMSE minimization algorithms are typically based 

upon a quadratic approximation to the error function ( )mQ .  Seber [16] suggests that the 

Newton method will converge provided the starting guess 
( )1m  is close enough to the 

estimate m̂ . However, in a few cases, global minimum convergence is not achieved. The 

algorithm could result in a local minimum.  

 Apart from the problem of local minimum convergence, MMSE methods at 

times, do not converge at all. Again, as in the local minimum case, convergence is 

sensitive to the starting guess. A bad starting value can either result in a local minimum 

or may never converge at all. However, MMSE minimization techniques are still widely 

used to solve non-linear problems because they can fit a broad range of functions. Also, 

they produce good estimates of the unknown parameters in the model with relatively 

small data sets [19].  

 A simple but time-consuming approach to circumvent the problem of 

convergence is to run this algorithm with several starting guess values and select the case 

with the least error. Also, the model parameter values at every iteration need to be 

constrained and should not be permitted unlimited freedom of movement. A few methods 

of constrained optimization for non-linear regression are available in [16,20]. However, 

convergence cannot be guaranteed. 
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 Convergence was also found to be highly dependent on the SNR. Simulations 

on various test cases showed that the convergence results are very poor for SNRs less 

than 15 dB. Hence, the Gauss Newton method was not found to be a reliable technique 

for our problem. There are other regression based techniques which are iterative and they 

too suffer from the aforementioned problems. 

 Hence, it was decided to follow a two-step model-based approach: first, the 

estimation of unknown frequencies in the signal, and second, the estimation of 

amplitudes of the corresponding frequencies. 

 
4.2.2  Inversion based on Spectral Estimation  

The first step can be achieved by using the MUSIC algorithm and the second by 

using a suitable estimator, such as a maximum likelihood estimator [21].  Referring to 

(3.1), we first estimate k 'sω  using (3.8). We are now left with the problem of estimating 

kA 's .  Formulating the received signal of (3.1) in a vector form as 

 

( ) ( )

1 k

1 k

1
j.f ( ) j.f ( )

2

j N 1 .f ( ) j N 1 .f ( ) k

1 ... 1 Ax(0) w(0)
Ax(1) e ... e w(1)

: : : ... : :
: : : :

x(N 1]) A w(N 1)e ... e

ω ω

− ω − ω

                        = +                  − −      

            (4.12) 

where W represents additive white Gaussian noise, the unknown amplitudes kA 's  may be 

estimated as [22] 

( ) 1ˆ ˆ ˆ ˆ .
−

= H HA S S S X                                                   (4.13) 
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where  k

P
j . f ( )

k 1
Ŝ e ω

=
= ∑ , obtained from the estimated frequencies using MUSIC. Under 

the assumption of white Gaussian noise, Â turns out to be the maximum likelihood 

estimator of A [21]. However, it is difficult to confirm the properties of noise. Yet, it may 

be called an unbiased estimator for Â = A [22]. There are other methods to estimate 

unknown amplitudes from signals corrupted by non-Gaussian noise. Chen [23] suggests a 

projection matrix decomposition approach to estimate sinusoidal parameters from colored 

noise. We may also use a pre-whitening filter to convert colored noise to Gaussian noise; 

hence we may use (4.13) for amplitude estimation.  Using Equations (4.1) and (4.2) 

recursively, we can estimate the permittivities of each of the layers.   

We now present a few simulations using the MUSIC algorithm. The input 

parameters for this algorithm are the radar parameters (such as start frequency, 

bandwidth, chirp rate, time of sweep, number of samples), number of snapshots of data, 

the number of subarrays and number of time delay components (or equivalently the 

number of sinusoids present in the signal).  

Let us consider the profile of Table 4.2, but with an SNR of 10 dB. As discussed 

earlier, the first step is the enhancement of the range profile. Figure 4-6 compares the 

FFT range profile with that obtained using MUSIC.  
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Figure 4-6 Range profiles obtained using FFT and MUSIC for profile of Table 4-2 

 
It is clearly seen that the resolution is much better using MUSIC where the three signal 

peaks are well defined. From this profile, the corresponding beat frequencies were 

identified and fed into the amplitude estimation module.  

 

 
Figure 4-7  Reconstructed Vs assumed profile of Table 4-2 using MUSIC algorithm 

 
The estimated set of parameters match really well with the true parameters and the 

reconstructed profile is plotted in Figure 4-7.  
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Let us now move on to consider a case where the distances are taken at random 

and are not constrained (Table 4-4) . Also, the SNR in this case is 5 dB. 

Table 4-4 Geo-profile to test MUSIC with random depth profiles 

 
 
 
 
 
 

 
Figure 4-8 compares the range profiles using FFT and MUSIC. After identifying 

the beat frequencies corresponding to valid peaks, the permittivity profile is reconstructed 

and is shown in Figure 4-9.  

 
Figure 4-8  Range Profiles obtained using FFT and MUSIC for profile of Table 4-9 

Permittivity vector rε  [1   1.5   2.9   1.5] 

Depth vector Z (cm) [7.3     13.4     87]  

SNR 5 dB 
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Figure 4-9 Reconstructed Vs actual permittivity profile of Table 4-9 

 

Hence, we find that MUSIC works well irrespective of the distribution of the depth 

profile. Next, let us consider a more complicated scenario (Table 4-5) characterized by 

very subtle variations in permittivity and a random depth distribution, which we can 

expect in a typical GPR field measurement. 

Table 4-5 Geo-profile to test MUSIC with the problem of sidelobes 

 

 
 
 
 
 
 
 
 
The range profiles using FFT and MUSIC are compared in Figure 4-10 below. 
 

Permittivity vector rε  [1     1.5    1.7    1.9    5    3.5   7  

Depth vector Z (cm) [13     5      7.5    4      5    4.7 ]  

SNR 10 dB 
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Figure 4-10 Range Profiles using FFT and MUSIC of Table 4-5  

 
In the FFT profile, we find only four distinctly identifiable peaks due to the 

sidelobe-masking phenomenon discussed in Chapter 3. However, using MUSIC, we are 

able to resolve all the valid signal peaks. Figure 4-11 below shows the reconstructed 

permittivity profile after feeding the beat frequency values into the estimator. 

 
Figure 4-11  Reconstructed Vs assumed profile of Table 4-5  
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So far the algorithm has been successful in estimating permittivities in cases of poor 

SNR and for any distribution of profile – when the right beat frequencies are chosen. To 

test the robustness of this algorithm, let us now explore what the implications are when: 

1. Noise peaks are chosen; and 

2. Signal peaks are missed 

The following test demonstrates this idea. Let us consider the MUSIC-enhanced profile 

of the earlier example shown in Figure 4-12 below. 

 
Figure 4-12 Range profile (using MUSIC) depicting enhancement of weaker reflections  

 
We shall now make two changes to the beat frequency values fed into the 

estimator. First, the beat frequency corresponding to 1147.5 Hz will be removed (missed 

peak) and the beat frequency corresponding to 2654 Hz will be added (false alarm case). 

Now, with the new set of beat frequency values, we tested the algorithm, and the 

reconstructed profile obtained is shown in the Figure 4-13. 

 

Remove 
Add
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Figure 4-13  Reconstructed profile obtained after including false alarms in the beat frequency vector 

 

The reconstructed profile shows that the profile looks slightly distorted. The selection of 

false alarms and missed peaks does not drastically alter the reconstructed profile.  

In summary, the performances of the layer stripping approach, Gauss Newton 

method and the MUSIC algorithm were analyzed for permittivity profile reconstruction. 

Various cases were considered to test the algorithm for robustness, and it was seen that 

layer stripping works well only under certain conditions; the Gauss Newton method is not 

suitable due to convergence issues; and the MUSIC algorithm performs well for various 

test cases (radar data with low SNRs, radar profiles with very subtle changes in 

permittivity and profiles with random distribution of depth). In the next chapter, we will 

apply the MUSIC algorithm to invert actual radar data obtained from field experiments. 
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Chapter 5  
 

Experimental Results 
 

 In chapter 4, a few methods for inversion were analyzed through simulations and it 

was seen that the performance of the MUSIC methods is better than the other methods. In 

this chapter, we will perform inversion on actual radar data collected from: 

1. Field experiments conducted by the Radar Systems and Remote Sensing 

Laboratory (RSL) in Antarctica during the 2003 field season  

2. Sandbox experiments at the RSL lab. 

3. Field experiments conducted by the RSL in Greenland during the 2004 field 

season. 

 
5.1 Experiments in Antarctica 
 
           The RSL at the University of Kansas used an Ultra Wide-Band (UWB) Frequency 

Modulated Continuous Wave (FMCW) radar to determine snow thickness over sea ice. 

We will use data collected during the 2003 field season in Antarctica to validate the 

working of the inversion algorithm. The estimated permittivity profiles will be compared 

with profiles obtained from in situ snow-pit measurements. A model of the snow radar 

system and the dielectric structure of the test site as given in [24] is depicted in Figure     

5-1. The parameters of the UWB radar are tabulated in Table 5-1.  
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Figure 5-1 Model of the snow radar used in Antarctica. 

 
Table 5-1  Parameters of UWB FMCW radar used in Antarctica 

Characteristic Value Unit 

Radar Type FMCW  

Sweep Frequency 2-8 GHz 

Range Resolution ≅4 cm 

Sweep Time 10 msec 

Transmit Power 13 dBm 

PRF 25 Hz 

Sampling Rate 5 MHz 

Antenna TEM Horn Antenna  
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It can be seen that the dielectric structure consists of a layer of air, several layers 

of snow and a homogeneous layer of sea ice extending all the way down to the bedrock. 

Air is modeled with a permittivity of one. Sea ice can be modeled using the Tinga mixing 

model given in [9]. However, for simplicity, the permittivity of sea ice can be taken to be 

approximately 3.14 in the microwave frequency region. Modeling the permittivity of 

snow requires parameters such as density, wetness and other factors which can be 

obtained from snow-pit measurements. From these parameters, the complex permittivities 

can be calculated using appropriate mixing models from the literature [9]. Table 5-2 

shows the in situ measurements taken at one of the test sites in Antarctica where the 

FMCW radar was tested. The models used to calculate the permittivites are discussed in 

Appendix A.   

Table 5-2 Modeled core (in-situ) parameters  

Layer 
Thickness 

(m) 

Density 
(g/cm3) 

Salinity 
[o/00] 

Wetness 
[Vol %] effectiveε   

(Modeled - Absolute) 
(from Appendix A) 

1.83 1.40  0 0 1.00 

0.03 0.191 0.145 -0.46  1.44 

0.03 0.254 - 0.73 1.60 
0.03 0.328 0.07 0.09 1.70 
0.03 0.364 0.31 0.00 1.77 
0.03 0.355 0.11 0.00 1.74 
0.03 0.334 0.21 0.00 1.71 
0.03 0.285 0.20 0.39 1.65 
0.03 0.293 0.12 0.49 1.66 
0.03 0.244 0.31 1.41 1.67 
0.03 0.254 0.34 1.67 1.71 
0.03 0.245 0.30 1.76 1.71 
0.03 0.226 0.27 1.96 1.69 
0.03 0.309 0.05 0.31 1.68 
0.03 - 2.17 3.00 2.20 

0.015 - 29.4 3.28 6.35 
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The permittivity profile of Table 5-2, modeled by using the empirical formulae in 

Appendix A, is plotted in Figure 5.2 below.  

Having looked at the actual permittivity profile at the measurement site, we now 

apply the inversion algorithm on actual radar data measured at the same site. Figure 5-2 

below shows the range profile of A-scope 20 plotted using FFT.  

 
Figure 5-2  Range Profile plot of A-scope 20 

From Figure 5-2, we can see three well defined peaks corresponding to  

1. Antenna feed through return 

2. Return from surface layer (Air/Snow interface) and 

3. Return from snow/sea-ice interface 

Apart from these peaks, there are other smaller peaks which correspond to internal 

snow layers. Before applying the inversion algorithm, the first step is to remove the radar 

system effects and the antenna feed-through using calibration data. A flat metal screen is 

used as the target, the return signal is collected, and the main peak (corresponding to the 

plate) is filtered out. The filtered signal now represents the impulse response of the 

system and is commonly used to account for system effects (which also include the 

Sea-ice return  
Snow/sea-ice interface 

Antenna feed through 
Surface return
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antenna response). The Fourier transform of this signal gives the transfer function of the 

radar system X(f) and can be eliminated from the observed return Y(f) using Equation 5.7 

to yield the response of the target ( )fΓ . 

( ) ( )
( )

Y f
f

X f
Γ =                                                    (5.7) 

The next step is to remove the antenna feed through by using a band-pass filter. The 

range profile after calibration and filtering is shown in Figure 5-3. 

 
Figure 5-3  Range Profile after calibration and filtering  

Now, the data can be fed into the inversion algorithm. Clearly, the reflections from 

internal snow layers need to be resolved. As seen in Chapter 4, we first apply MUSIC on 

this data and enhance the spectrum. Figure 5-4 compares the range profiles obtained 

using FFT and MUSIC.  
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Figure 5-4  Range Profiles obtained using FFT and MUSIC 

The beat frequencies detected from the enhanced range profile have been tabulated in 

Table 5-3 below. 

Table 5-3 Comparison of estimated beat frequencies of core with those of FFT and MUSIC    

 

 

 

 
 
 
 
 
 
 

 

 

These beat frequency values were fed into the estimator and the reflection 

coefficients were estimated. These values were then used to estimate the corresponding 
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layer permittivities by using Equations 2.1 and 2.2 recursively. The estimated permittivity 

profile is plotted against the actual profile (modeled) in Figure 5-5 below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-5  Reconstructed Vs modeled profile for Pit 1 

As we can see from the above profile, the MUSIC-estimated profile matches 

reasonably well up to a certain depth, but gradually deviates from the measured values, as 

we move into deeper layers. This deviation is expected, because, at greater depths, the 

signal is greatly attenuated because of significant salinity, as shown in column 3 of Table 

5-2, which was not factored into the reconstruction of the permittivity profile.  

Other variations in the estimated profile could be attributed to: (1) a discrepancy 

in the model representing the radar return, (2) an error in calibration data, (3) very subtle 

changes in the permittivity that MUSIC is not able to distinguish, and (4) measurement 

errors in the field that cannot be compensated for at this stage, since we are using existing 

data. 

 The algorithm was also tested at two other locations where measurements were 

made using the same FMCW radar. Figure 5-6 shows the range profiles using FFT and 

MUSIC on data measured at one of the pits (Pit 2) on September 28, 2003.  
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Figure 5-6  Range Profiles obtained using FFT and MUSIC for Pit 2 

Following the same procedure, the reflection coefficients were estimated and the 

reconstructed permittivity profile is plotted in Figure 5-7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-7  Reconstructed Vs modeled profile for Pit 2 

Similarly, the algorithm was also tested on another location on October 14 (Pit 3). 

The range profiles and the reconstructed permittivity profiles are depicted in Figures 5-8 

and 5-9 respectively.  
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Figure 5-8  Range Profiles obtained using FFT and MUSIC for Pit 3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 5-9 Reconstructed Vs modeled profile for Pit 3 

 
 
5.2  Tests at the Sandbox lab at RSL  
 
  The inversion algorithm was also tested on data collected in the sandbox facility 

of the RSL lab at the University of Kansas. This facility consists of a rectangular box 

filled with quartz sand and is built with a system such that an antenna can be mounted to 
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be looking downwards (towards the sand). A network analyzer is used in place of a radar 

and is connected to the antennas using RF cables. The network analyzer is connected to a 

computer using a General Purpose Interface Bus (GPIB) card and can be controlled using 

MATLAB. A detailed description of the sandbox set-up and the RF circuitry is given in 

Chapter 5 of [25].  

The operating parameters such as start frequency, bandwidth, number of samples 

and sweep time are set in the network analyzer, and calibration is performed at the input 

to the antennas. To remove system effects, a flat aluminum plate is laid over the sand 

surface and 11S  measurements are taken. Then the targets are buried under sand and the 

11S  is measured over the frequencies of interest. Typically, the mismatch between the 

cable and the antenna is very large, and its sidelobes can mask small reflections buried 

under sand. This mismatch is removed by performing a Sky test where the antenna is 

pointed upward in such a way that there is no reflecting surface at least within the 

maximum unambiguous range of the system. The Sky test measurements are then 

subtracted from the actual measurements and the Fourier transform of this signal yields 

the range profile. 

 The inversion algorithm was tested on data collected using an HP 8753D network 

analyzer. The network analyzer parameters are tabulated in Table 5-4 below. A TEM 

horn antenna (operating in the 2-18 GHz frequency range) was used to take 

measurements. A bandwidth of 5 GHz was chosen so that we could have a resolution of 3 

cm. Such a fine resolution is desired so that we could stack up layers (wood, Styrofoam) 

of small thickness in such a way that the measurements could be taken without altering 

the antenna arrangements in the sandbox.   
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Table 5-4  Network Analyzer Parameters for Sandbox experiment  

Start Frequency 2 GHz 
Stop Frequency 7 GHz 
Number of frequency 
samples 

1601 

Sweep time 800 ms 
Transmit Power 0 dBm 
Calibration type 1 port 
IF Bandwidth 3000 Hz 
Antenna type TEM Horn
Antenna Gain 10 dB 

 
 

The network analyzer was set in the stepped frequency mode so that it is 

equivalent to a stepped-frequency radar. As described earlier, the network analyzer was 

interfaced with a computer and single port calibration was performed. Then, the sky shot 

measurements were taken. Figure 5-10 shows the target structure that was set up to test 

the inversion algorithm. 

 
Figure 5-10  Multilayered Target stack to test inversion algorithm 

 
It can be seen that there are four layers which form a dielectric stack giving rise to three 

interfaces. The residual mismatch between the antenna and the cable is removed by 

filtering and the filtered signal (in the linear scale) is shown in Figure 5-11.   
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Figure 5-11  Stack return after calibration and filtering 

 
Now, the MUSIC algorithm is applied on this signal to enhance the profile and 

estimate the time delays corresponding to signals. Figure 5-12 shows the enhanced range 

profile obtained using MUSIC. 

 
Figure 5-12  Range Profiles obtained using MUSIC for multilayered stack 

   

Clearly, MUSIC is able to resolve the three major reflections as seen from Figure 5-19. 

However, the Maximum Likelihood MUSIC estimator could not correctly estimate the 

reflection coefficients. This could be due to the non-Gaussian nature of noise. For 

estimating the amplitudes, the layer stripping approach was used. The time delays 

Air/WoodWood/Styrofoam
Styrofoam/Sand
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corresponding to valid reflections were obtained using MUSIC and the amplitudes were 

estimated using the recursive equations of Chapter 2. Figure 5-13 shows the 

reconstructed profile. 

                   
Figure 5-13  Reconstructed Vs actual Permittivity profile of multilayered stack 

 

The reconstructed profile reasonably matches the true profile. For the second 

layer, the algorithm has predicted a value of 2.5. However, the true value of the 

permittivity of sand was not measured, and since a value between 2.5 and 3.5 has been 

documented [26], a value of 3 was chosen for modeling. Hence, the algorithm has yielded 

a reasonable estimate. We also observe a deviation in the position of the third interface 

(between Styrofoam and sand). This deviation can be attributed to the fact that a 

permittivity of 2 was chosen for velocity correction in order to identify the reflecting 

boundaries. 
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5.3  Experiments in Greenland  
 
 The Greenland sea-ice research team of the RSL used a prototype of a Plane 

Wave radar in Greenland during the summer 2004 season, with the objective of 

estimating the thickness of snow over sea-ice. We used this data as yet another test case 

for the inversion algorithm. Table 5-5 shows the specifications of the radar prototype. 

Table 5-5 Network Analyzer Parameters for Plane Wave measurements in Greenland 

 
Type of radar Step Frequency 

Start Frequency  12 GHz 

Bandwidth 6 GHz 

Sweep Time 4.72 sec 

No. of frequency points 801 

 

Radar measurements were taken over a horizontal traverse of 80 m, with ten 

measurements every 1 meter. Core data was also collected at three different pits close to 

the test site. Stratigraphy maps were observed at a couple of points along the grid. Figure 

5-14 shows the relative positions of the core sampling areas with respect to the area 

where radar measurements were taken. It is clearly seen that Pit 2 is the only core 

reasonably close to any of the radar measurements and may provide a reasonable 

reference for radar measurement at the record marked 0. Hence, our objective was to 

invert the data at record 0 and compare the estimated permittivity profile with the core 

data and the stratigraphy map at record 0. Figure 5-15 shows the set-up of the plane wave 

experiment.  
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Figure 5-14 Relative locations of measurement grid and cores 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5-15  Experimental set up of the plane wave test 

 

 

 
Network Analyzer 

Unit 

Parabolic reflector 

Horn Antenna 

Cable (6.6 m) 
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The network analyzer is connected to a horn antenna which then radiates the 

transmitted signal to the parabolic reflector. The EM wave radiated from the reflector is 

approximately a plane wave. The network analyzer is calibrated at its terminals and hence 

the observed distances are with respect to this terminal. The cable connecting the horn 

antenna to the analyzer measured around 6.6 meters and “loop” distance between the 

horn and the snow surface is around 3.1 meters.  

Figure 5-16 shows the echogram of the measurements along the grid. It can be 

seen that the surface layer (marked as 1) occurs around a distance of 9.7 meters (6.6 

meters of the cable plus a loop of 3.1 meters) followed by two discontinuous layers 

(marked as 2) at around 10.5 meters and 10.7 meters. The echogram also indicates the 

presence of  a discontinuous layer at around 11.6 meters (marked as 3) . Layers 2 and 3 

could be annual snow layers which get compressed, leading to higher densities. 

 
Figure 5-16  Echogram of radar measurements along the KU radar grid  

1

3

2 



  63

Figure 5-17 shows the radar measurements at record 0 (after filtering any spurious 

signals). The peak at around 6.5 meters is due to the mismatch between the cable and the 

horn antenna. The surface return is observed at around 9.7 meters. 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 5-17  Radar measurement at record 0 (after subtracting the sky shot return) 

 

Here, an interesting observation in the above figure is that several reflections 

corresponding to internal layers are higher than the surface return. Intuitively, it can be 

understood that inverting this profile directly would lead to abnormal values of 

permittivity (because of abnormal reflection amplitudes) and hence the observed data 

needs to be analyzed and any irregularities need to be removed. 

These strong peaks could be due to any of several reasons: abrupt density 

changes, multiple reflections from internal snow layers, clutter due to scattering effects, 

system noise, or reflections from static objects like the antenna pole. Since the inversion 

algorithm works best on data free from system effects and clutter, it is necessary to 

eliminate these effects before applying the inversion algorithm on this data.  

Surface 
return Internal layers
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A good way to check for reflections from stationary targets is to compare adjacent 

records and look for similarity in the occurrences of peaks at the locations of interest. 

Applying the same test to our problem, we found no consistency in the appearance of the 

stronger reflections. Hence, we can conclude that these reflections are not from stationary 

targets. Next, we used the density data from the nearest snow pit (marked as Pit 2 in 

Figure 5-14) and modeled the permittivity profile using the dry snow permittivity model 

[9]. From this profile, we inferred that there is no drastic change in permittivity that could 

cause spikes to appear in the range profile. Using this permittivity profile, the range 

profile was modeled using Agilent’s Advanced Design System (ADS) so that the effect 

of multiple reflections can be analyzed.  

 

 
 
 
 
 
 
 
 
 

Figure 5-18  Simulated radar return of Pit 2 using ADS 

 
 
 
 
 
 
 
 
 
 
 

Figure 5-19  Actual radar return at record 0 
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Figure 5-18 shows a plot of the range profile modeled using ADS. This figure is 

compared with a profile of the observed return at record 0 (Figure 5-19). We find that 

there are several inconsistencies in the above comparison. Clearly, the ADS simulation 

shows that the surface return is dominant, whereas the actual data shows the presence of 

several strong returns either comparable to or greater than the surface return. Also, the 

positions of many of the peaks do not match well. Hence, we have insufficient 

information for this problem.  

However, it was decided to test the inversion algorithm on data simulated using 

ADS. Figure 5-20 compares the range profiles obtained using FFT and MUSIC. Clearly, 

MUSIC is able to resolve internal reflections which appear embedded with the sidelobes 

of stronger returns. From this enhanced profile, delays corresponding to signal peaks 

were chosen and fed into the estimator, and the estimated permittivity profile is plotted in 

Figure 5-21. 

 
Figure 5-20  Range Profiles of simulated data obtained using FFT and MUSIC 
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Figure 5-21  Reconstructed permittivity profile Vs actual (modeled) profile  

 

In summary, the MUSIC-based inversion algorithm was successful in enhancing 

the profile in all three cases. But the amplitude estimator was only partly successful in 

inverse permittivity profiling due to the non-white/non-Gaussian nature of noise. 

However, in conjunction with the layer stripping method, we were able to successfully 

invert the data. The test on plane-wave data is still being researched, and with sufficient 

information about the internal layers of snow, the data can be inverted.  
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Chapter 6  
 

GUI for the Inversion Algorithm 
 

In order to make the enhancement and inversion algorithm accessible and easy to 

use, a Graphical User Interface (GUI) in MATLAB was developed. This chapter 

describes the features of the GUI and instructions for its use. Figure 6-1 shows a snapshot 

of the GUI. There are essentially three modules in this GUI . 

6.1  Parameter declaration and File Selection: 
 
 The algorithm has been developed to work with the FMCW and the Step 

Frequency Radar, two of the commonly used radars in geological exploration. In the 

parameter declaration step, the user selects the type of radar data to work with. This is 

important since a unique forward model is required, depending on the type of radar. Once 

the user chooses the appropriate radar type, the GUI invokes the corresponding forward 

model into the algorithm.  

 The next step is to feed in radar data – which can be actual field data or data 

synthetically generated using empirical forward propagation models.  

6.1.1  Actual radar data 

In order to work with actual data, the recorded radar data file has to be stored in 

the user’s local computer. The user can select any of the recorded data files and load the 

data into the GUI. It is important to note that this software can accept only a .mat file as 

input data. A few recorded radar data files taken by the RSL (which were tested using 

this GUI) can also be chosen by the user to get a better understanding of the algorithm. 

The type of radar used and the required radar parameters have been tabulated in Table 6-
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1 for reference. The user can use any reasonable value for p from the eigen value chart. 

(The same column also shows a range of values which may be used). 

Table 6-1 Reference radar parameters for the GUI 

 
Radar data 

 File 
Type of 
radar 

Band-
Width
(BW) 

Start 
Freq 
(f0) 

Sweep 
time 
(Tp) 

No. of 
freq. 

points 

No. of 
reflections 

(from Eigen 
chart) 

 
Antarctic dataset 1 
Antarctic dataset 2 
Antarctic dataset 3 

 

 
 

FMCW 
 

 
 

6 GHz 
 

 
 

2 GHz 
 
 

 
 

10 ms 
 

 
 
- 
 

 
 

20-40 
 

 
RSL – GPR  

data 
 
 

 
Step 

Frequency 

 
7 GHz 

 
2 GHz 

 
800 ms 

 

 
501 

 

 
 

3-7 

 
Greenland ADS 

data 
 

 
Step 

Frequency 

 
6 GHz 

 
12 
GHz 

 
4.724 s 

 

 
801 

 
 

30-40 
 
 

 

6.1.2  Synthetic radar data 

The user may simulate radar data by using appropriate forward models. The 

inputs required here are the permittivities and corresponding depths (in meters) of each of 

the dielectric layers of the multi-layered profile. Also, the user enters the Signal to Noise 

Ratio (in dB) for the simulation. In this algorithm, we model noise as White Gaussian 

random process. The user can then view the fed-in permittivity profile. 
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Figure 6-1  Snapshot of the GUI for model based data enhancement and inversion 

The next step in the parameter declaration process is to feed in basic radar 

parameters such as bandwidth of the radar (in Hz), starting frequency (in Hz) and sweep 
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time (in seconds). If a step frequency radar (or a network analyzer as in the case of RSL 

sandbox measurements) has been chosen, the user is required to enter the number of 

frequency points of the measurement. Once these parameters are entered, the range 

profile of the chosen data (using the conventional Fourier transform algorithm) can be 

viewed as a MATLAB figure. If an FMCW radar has been chosen, FFT gives the range 

profile, and if a step frequency radar has been chosen, the IFFT of the data gives the 

range profile of the data.  

Note 1: It is assumed that the data fed in is calibrated and the antenna feed-through and 

other spurious signals have been filtered out.  

Note 2: For an FMCW radar, the number of data samples has been fixed at 500. The rate 

at which the signal is sampled is a function of the maximum target depth and radar 

bandwidth and this in turn affects the number of samples (N) in the signal. This 

relationship is given by Equation 6.1, derived from [24]. 

Max_Depth = 
B4

TCF pb                                              (6.1) 

where C is the velocity of the EM wave, Tp is the sweep time, Fb is the beat frequency 

and B is the radar bandwidth. To process any depth profile, we may either change the 

number of data samples (N) or the radar bandwidth. But it was found that changing N 

was not a good solution, because the length of the signal influences the size of the 

autocorrelation matrix in MUSIC, and we found that large values of N frequently cause 

“Out of memory” problems in MATLAB, which terminate the GUI. Hence, it was 

decided to limit the number of samples to 500. However, this poses a condition on the 

bandwidth of the radar system entered by the user. Table 6.2 shows the maximum range 
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that can be processed for a given bandwidth. If the user enters a geo-profile such that the 

bandwidth does not support the maximum range, a warning message appears in the GUI 

asking the user to relax the bandwidth. Please note that this applies only for FMCW 

radar simulation. In the case of actual data, the user may resample the radar data such 

that the bandwidth-range relationship is satisfied (as was done for experimental Antarctic 

data). 

Table 6-2  Bandwidth Vs range for N = 500 

Bandwidth Maximum range  
6 GHz 3.12 m 
5 GHz 3.75 m 
3 GHz 6.25 m 
1 GHz 18.7 m 

0.5 GHz 37. 5 m 
 

6.2  Enhancement of features 
 

 In this step, the radar data is enhanced by applying MUSIC algorithm. The 

number of frequency samples for spectral analysis is set at 16384 (2^14). This parameter 

is not critical, and is chosen to yield a finer spectrum. Following this, the user pushes the 

button intended to generate the eigen value distribution chart and enter the number of 

sinusoidal components expected in the actual signal. The amount of time taken to 

generate this graph can typically vary between a few seconds (for a small number of 

signal samples) to five minutes (for a large number of signal samples). Typically, the 

number of most significant eigen values (from the chart) is taken as the number of 

sinusoids in the signal. Once this value is fed in, pushing the "View Enhanced Profile” 

button generates two high-resolution enhanced spectral plots using MUSIC plotted 

against the frequency spectrum obtained by using the FFT – one with the distance axis 
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and the other with the time delay axis. As mentioned in Chapter 4, a good guess on the  

number of  sinusoids yields a smoother profile. If the user chooses to enhance the profile 

with a different guess on the number of sinusoids, it is necessary to go back to the “Eigen 

value chart generation” step and then re-enter a new guess value. Reference values (of 

number of sinusoids) for the available radar data files can be seen in column 7 of Table 

6.1.  

 
6.3  Permittivity Estimation 
 

 In this step, the amplitude of the sinusoids is estimated using the amplitude 

estimation module discussed in Chapter 4. The GUI automatically selects the time delays 

corresponding to sharp peaks in the spectrum by choosing a threshold of 0.5 (which was 

considered reasonable after testing the algorithm on a large number of data sets. This 

threshold may be readjusted if so desired. From the amplitudes, the permittivity profile is 

reconstructed by using the recursive forward modeling equations of Chapter 2. Finally, 

the GUI plots the estimated permittivity values with depth. For comparison, the user may 

feed in the layer permittivities and their corrresponding depth values (from core 

measurements or any other a priori source). It may be noted that, for the already 

available data sets and synthetic data, the true profiles need not be fed in — they have 

been pre-defined in the GUI.  

If the user chooses to work with a new data set, he may do so by starting from 

step 1; however, the contents of the workspace need be cleared by clicking the “Clear 

Contents” button in the right-hand corner of step 1 of the GUI. 
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Note: For the GPR-sandbox test, inversion was performed using the layer stripping 

approach. The MUSIC amplitude estimator did not yield a reasonable estimate because of 

the non-Gaussian nature of noise.  

 

6.4 Sample Demonstration 
 

Here, we give a step-by-step illustration for working with the GUI for both 

synthetic and actual radar data. 

6.4.1 Synthetic radar data 

• Invoke the GUI from the MATLAB command prompt using this command : 
 
>> cd D: \ 
>> MBSP (to start the GUI) 

STEP 1 
 

• Select the type of radar you wish to simulate. 

• Enter layer permittivities, depths, and SNR, and click the “View permittivity profile 

(Synthetic)” button. (A few flag variables have been initialized in this step, so do not 

proceed without clicking this button.) 

• Enter radar parameters - Bandwidth, starting frequency, sweep time and number of 

frequency points (this parameter is necessary only if you have chosen a step 

frequency radar). 

• Do not proceed to step 2 before clicking the “View range profile” button. This is 

because several key parameters for data enhancement are defined upon clicking this 

button. 

 

STEP 2 
 

• Click the “Apply MUSIC” button to generate the Eigen value chart. This process can 

take several seconds/minutes depending upon the data length and the processing 

speed of the computer. The eigen value chart shows the distribution of eigen values. 



  74

• Estimate the number of strongest eigen values seen in the chart and feed in the value 

of  ‘p’ – the average number of sinusoids in the signal (expected). 

• Clicking the “View Enhanced Profile” button plots two high-resolution MUSIC- 

enhanced profiles: a) with respect to time delay axis, and b) with respect to distance 

axis. 

• At this point, if you choose to re-enhance the profile with a different  ‘p’  value, you 

need to go back to the first button in step 2 and generate the Eigen value chart. 

 
STEP 3 

 
• Since this is simulated data, you need not re-enter the true layer permittivities/layer 

depths. These values will be taken from the values already entered in step 1. 

• Click the “Plot reconstructed permittivity profile” button to estimate the permittivity 

profile and to plot it against the true profile. 

• If you wish to work with a different data set/different radar type, click the “Clear 

contents”  button on the right-hand corner of  step 1. 

 

6.4.2 Actual radar data 

• Invoke the GUI from the MATLAB command prompt using this command 
 
>> cd D: \ 
>> MBSP (to start the GUI) 

STEP 1 
 

• Select the type of radar you wish to simulate. 

• Push the “Open input file” button to select the recorded radar data into the GUI. This 

data can be either your own radar data file or any of the recorded RSL data files 

(which were tested using this algorithm). 

• Enter radar parameters - Bandwidth, starting frequency, sweep time and number of 

frequency points (this parameter is necessary only if you have chosen a step 

frequency radar). It is very important that the type of radar and the corresponding 

radar data match. Please refer to Table 6.1 for working with RSL data. 
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STEP 2 
 

• Push the “Apply MUSIC” button to generate the Eigen value chart. This process can 

take several seconds/minutes depending upon the data length and the processing 

speed of the computer. The Eigen value chart shows the distribution of Eigen values. 

• Estimate the number of strongest Eigen values seen in the chart and feed in the value 

of  ‘p’ – the average number of sinusoids in the signal (expected). 

• Clicking the “View Enhanced Profile” button plots two high-resolution MUSIC- 

enhanced profiles: a) with respect to time delay axis, and b) with respect to distance 

axis. 

• At this point, if you choose to re-enhance the profile with a different  ‘p’  value, you 

need to go to back to the first button in step 2 and generate the Eigen value chart. 

 
STEP 3 

 
• If you have chosen any of the RSL radar files, you need not re-enter the true layer 

permittivities/layer depths. These values have been pre-defined.  

• Click the “Plot reconstructed permittivity profile”  button to estimate the permittivity 

profile and to plot it against the true profile. 

• If you wish to work with a different data set/ different radar type, click the “Clear 

contents” button on the right-hand corner of  step 1. 

 
Note: If you wish to access the source file for this GUI, at the MATLAB command  

      prompt, enter  “ >> guide MBSP ”. 
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Chapter 7  
 

Summary and Future Work 
 
7.1 Summary 
 

Ground penetrating radars are being used to characterize features of the surface 

and the sub-surface. However, the GPR data are corrupted with noise, scattering, and 

losses due to the random nature of the underlying subsurface. In order to enhance the 

GPR return and then to estimate the underlying permittivity profile, a model-based 

algorithm was implemented and tested.  

 Algorithms based on MMSE minimization (Gauss-Newton) and spectral 

estimation (MUSIC) were developed (Chapter 3) and first tested on synthetic data in 

Chapter 4. It was found that the MUSIC algorithm – a spectral estimation technique – 

was more robust and is suitable for tests on actual radar data.  

In Chapter 5, the MUSIC algorithm was applied on radar data collected during 

field experiments in Antarctica using an FMCW radar and on tests conducted at the 

sandbox facility at the RSL lab using a network analyzer. It was found that the MUSIC 

algorithm performed reasonably well to enhance the radar returns and to unmask the 

weak sidelobe embedded returns. The permittivity inversion part of the algorithm also 

performs well as long as the noise statistics are that of AWGN. In the sandbox test, 

MUSIC was only partly successful; however, in conjunction with the layer stripping 

method, we were able to successfully invert the data. Finally, a Graphical User Interface 

(GUI) for the model-based inversion algorithm was also developed in MATLAB.  
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7.2  Future Work 
 
 
The accuracy of model-based techniques for data inversion depends on several factors  – 

here are a few: 

1. Accuracy of the mathematical model that represents the radar response 

2. Accuracy of the measurement and calibration system 

3. Signal to noise ratio of the system 

4. Effects of clutter and scattering due to rough surface 

Hence it is important that the mathematical model be thoroughly tested using several 

cases of synthetic data. Calibration errors can drastically change the amplitude and phase 

of the actual signal and hence, the calibration of the radar system must be undertaken 

with great care.  

In this work, we have only considered the case of specular reflection and the 

effects of clutter; surface scattering and attenuation have been neglected from the model. 

Incorporating these effects into the model can enhance the performance of the inversion 

algorithm.  

Inversion methods based on three-dimensional modeling, such as the Method of 

Moments (MOM) and Finite Difference Time Domain (FDTD), take into account the 

effects of scattering due to random surfaces and the three-dimensional antenna beam 

pattern; hence, they can be implemented for the forward model to yield better inversion 

results. 
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Appendix A 
 
 

Modeling the complex dielectric constant of 
snow cover on sea ice 
 

Snow can typically occur in two phases – dry and wet. Dry snow is a mixture of 

ice and air and does not contain water, whereas wet snow includes water. Table 5-2 

shows that the Antarctic snow is a mixture of wet snow and brine.  

To model the dielectric constant of this mixture, we first model the permittivity of 

wet snow using the empirical Debye-like model [9], where the real part of permittivity is 

mathematically modeled as: 
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and the imaginary part is modeled as  
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where GHzf 07.90 = , the effective relaxation frequency of wet snow, vm denotes the  

moisture content in volume percentage, c  represents the free space velocity, f is the 

frequency variable and the constants A, B and x are derived from experimental data as 

given in [9]. Once the wet snow permittivity has been modeled, we then model the 
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permittivity of brine using the formulation developed by Stogryn [26]. The real and 

imaginary parts of the complex dielectric constant of brine are given as: 
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where w∞ε is a dimensionless quantity equal to the high frequency limit of the dielectric 

constant of pure water, b0ε is the static dielectric constant of brine, bσ , bτ are the 

conductivity and relaxation time, respectively, of brine and are empirically related [9] to 

the normality and temperature of brine in the mixture. 

Finally, we model the permittivity of the mixture by treating brine as an inclusion 

within a wet snow mixture and using the mixing formula as given in [27].    
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From Equation 5.5, the effective permittivity of the mixture is calculated as 
 
 

eff ws mixε =ε +∆ε                                         (A.6) 
 

where 
' ''

w s w s w sjε = ε + ε , the complex permittivity of wet snow, χ  denotes 

the coupling factor considering brine inclusions to be isotropically oriented oblate 
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spheroids, 0A  is the depolarization factor, and bV is the brine volume fraction which is a 

function of the salinity and temperature of  brine [9]. 

Evaluating the above expressions, the effective permittivities and their 

corresponding distances are tabulated in Table A-1 below. 

Table A-0-1 Modeled Permittivity Profile 

 
Layer 

Thickness 
(m) 

effectiveε   
(Modeled - complex) 

effectiveε   
(Modeled - Absolute) 

1.83 1.0000 1.00 

0.03 1.45 + j 0.0193 1.44 

0.03 1.60 + j 0.0175 1.60 
0.03 1.70 + j 0.0021 1.70 
0.03 1.77 + j 0.0044 1.77 
0.03 1.74 + j 0.0016 1.74 
0.03 1.71 + j 0.0029 1.71 
0.03 1.64 + j 0.0104 1.65 
0.03 1.66 + j 0.0121 1.66 
0.03 1.66 + j 0.0462 1.67 
0.03 1.71 + j 0.0576 1.71 
0.03 1.70 + j 0.061 1.71 
0.03 1.69 + j 0.0692 1.69 
0.03 1.67 + j 0.0066 1.68 
0.03 2.19 + j 0.1739 2.20 
0.015 6.13 + j 1.2496 6.35 

Ice bottom 3.14 3.14 
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