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Abstract

In this chaptey we presenta multiagentsystemarchitecturefor dynamic
coalitionformationandcoalition strateyy learningin a realtimemultisensotar-
gettrackingervironment. Agentsoperateautonomouslyandthey have incom-
pleteinformationabouttheir potentialcollaboratorsin addition,accuratdamget
trackingrequiresthat multiple agentsrecognizeand synchronizeheir actions—
collectingmeasurementsn the sametargetwithin the sametime frame. There-
fore someform of cooperationis necessaryln our system,agentsform coali-
tions via multiple 1-to-1 negotiations. However, dueto the noisy and uncer
tain propertiesof the ervironment, coalitionsformed can be only suboptimal
andsatisficing. To betteradaptto changingrequirementand ervironmentdy-
namics,eachagentis capableof multiple levels of learning. Eachlearnsabout
how to negotiatebetter(case-basetbarning)and how to form a coalition bet-
ter (reinforcementearning). To increasethe chanceof reachinga high-quality
negotiateddeal, our work alsoaddressessuesn taskallocationanddynamic
utility-basedprofiling.
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1. Introduction

In this chapterwe describea satisficing,negotiated,andlearningcoalition
formationarchitecture Ourfocusis onforming dynamicmultiagentcoalitions
for trackingtargetsin anoisyanduncertairervironment.A coalitionis agroup
of agentghatcollaborateo performataskthatis generate@dsarespons¢o an
eventthathasoccurredn theervironment. A dynamiccoalitionis onethatis
formedin responsdo aneventanddissohed whenthateventno longerexists
or whenthetasksrequiredto respondo thateventarecompleted A coalition
is necessaryhenanagentcannotrespondo aneventby itself dueto lack of
information,knowledge functionalcapabilities or otherresourcesTherefore,
anagentforms a coalition with otheragentghatit believescanbe of helpin
solvinga problem.

In general,an agentprefersto form a coalition that is optimal to maxi-
mizetheyield of the systemasawhole. To facilitatesuchoptimalrationaliza-
tion, the coalition-initiating agentneedsto have completeinformation about
its world andits neighboringagents.In our problemdomain,agentshave in-
completeinformation, maintaindifferentinformationbasesandmustreactin
realtimeto eventsthatthey encounterandcannotafford optimality. How re-
sourcesareusedand sharedmotivatedusto designmethodologieshat allow
eachagentto be consciousof its own local resourceandalsothoseit shares
with otheragentssothatcoalitionscanbeformedin themostefficientmanner
possibleunderthe circumstancesandtargetscanbe tracked aswell aspos-
sible. Hence,our coalition formation architecturedealswith coalitionsthat
aresuboptimalandsatisficing,sincenoiseanduncertaintyin the environment
precludethe possibility of anoptimal, fully rationalcoalitiondesign.

In our work we areinterestedn improving the quality of a coalition for-
mation processand the quality of a coalition in termsof its future tracking
performanceOur coalitionformationmodelis adaptve andtakesrealtimeis-
suesdnto consideratioriSohandTsatsouli2002a,Sohand Tsatsouli2002b].
An initiator agentstartsthe coalitionformationprocesdirst by selectingnem-
bersin the thatagents neighborhoodhatare qualifiedto be partof aninitial
coalition,andthatthecoalitioninitiator believes(basedn experience}hatare
mostlikely to acceptits requestfor sharingof resourcegndtasks. A neigh-
borhoodof an agentconsistsof all otheragentsthatthe agentknows abouta
priori. After selectingts potentialcoalitioncandidatestheagentevaluateghe
statusof thesecandidatedo rank themin termsof their respectre potential
utility valuesto the intendedcoalition. Following this rankingstep,we apply
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anumberof methodgor assigningasksto theinitial coalitionmembersoas
to maximizethe possibility of all tasksbeingperformed. The taskallocation
procesdakesinto accountthe abilities of agentstheir previous behaior, and
thedynamicsof theervironment.

Next the agentinitiatesnegotiationrequestso the top-ranked candidatesn
orderto attemptto corvince themto join the coalition. In agumentaire ne-
gotiation agentsrequestthe sharingof resourcesandjustify their requestby
providing aguments,suchastheir own work load, their capabilitiesto pro-
vide the requestedesourceor service,anddomain-specifignformationsuch
astametlocationandvelocity. In ourwork anagentmayacceptheamguments
suppliedby its negotiationpartnerandpartwith someof theresourcedt con-
trols, or it may counteroffer by offering a partof whatis beingrequestedor it
may outrightrefusethe request.In the two latter casesthe agumentatiorbe-
tweenagentontinueuntil adealis reachedadealis consideredmpossible,
or time lapses.The ngyotiationprocesss guidedby a protocolthatindicates
what agumentsmay be presentedirst, which counteroffers may be made,
whatis the willingnessof an agentto agreeto a deal,andso on. The proto-
col is situatedandis derived from the stateof the agent(e.g. numberof tasks
beingperformedor alreadycommittedto), the stateof the tamget (e.g. speed
andlocation),andthe stateof theworld (e.g. how mary otheragentscanpro-
vide the requiredresource).Sincetheseare all dynamic,we have chosento
useCase-Base®Reasoning CBR) to retrieve the mostpromisingnegotiation
protocolfrom a casebaseof previously usedones.CBR allows usto retrieve,
adapt,andthenapply a negotiation protocolthatis bestsuitedto the specific
situationin the ervironment, making our negotiationtechniqueadaptve and
dynamic. Casesf nggotiationsare alsosaved andlearned allowing the sys-
temto improve its negotiationperformanceleadingto betterdeals.

In theend,the coalitionmayfail to form becaus¢he candidatesnayrefuse
to cooperatepr the coalition may form successfullywhenenoughmembers
reacha dealwith the initiating agent. Finally, the initiating agentsendsan
acknavledgmentmessageo the coalition memberso announcehe success
or failure of the proposedtoalition. If the coalitionformationattemptresulted
in successthenall coalition memberghat have agreedto join will carry out
theirrespectre tasksattheappropriatdime. This approachs opportunisticas
the goalis to obtaina satisficingcoalition andthe succes®f the formationis
not guaranteed.This is the risk that eachagentis willing to take: the utility
of respondingiimely to a problemis dominatingthe utility gainedfrom the
quality of the solution, sincethe domainis time-critical and dynamic. In a
way, an agenthasno choicebut to attemptand acceptfailuresin coalition
formationseveraltimesaslong asthefailuresarequickly reached.



Our ngyotiating agentshehae basedon a setof social characteristicsthat
aresharedby all of them. Specifically the sensoicontrolling agentscanbe
describeds:

1 Autonomous: Eachagentrunswithout interventionfrom humanusers.
It maintainsits own knowledgebase makesits own decisionsandin-
teractswith thesensoiit controls,neighborsandervironment.

2 Rational: Eachagentis rationalin thatit knows whatits goalsare,and
it canreasorandchoosdrom asetof optionsandmake anadwantageous
decisionto achieve its goal[WooldridgeandJenningsl995].

3 Communicative: Eachagentis ableto communicatewith others,by
initiating andrespondingo messagesndcarryingout corversations.

4 Reflective (or Aware): Accordingto [BrazierandTreur1996],areflec-
tive agentreasongasedon its own obsenrations,its own information
stateand assumptionsits communicatiorwith anotheragentand an-
otheragents reasoningandits own control or reasoningand actions.
By beingreflectve, eachagentis time-avare and situationally aware.
Whenanagents time-avareit obserestimein its decisionmakingand
actions. Whenan agentis situationallyawareit obseresthe resources
thatit shareswith otheragentsijts currenttasks,messagegrofilesand
actionsof its neighbors,andthe external changesn the ervironment.
However, we requirea strongeievel of situationalawvarenessAn agent
alsoobseresits own resourceshat sustairthe well-being of the agent.
For ahardwareagenttheseresourcesnay bethe batterypower, thera-
dio frequeng links, andso on. For a software agent,theseresources
maybe CPU,RAM, disk spacecommunicatiorchannelsandsoon.

5 Adaptive: Eachagents ableto adaptto changesn theervironmentand
learnsto performataskbetter not only reactvely but alsofrom its past
experience.

6 Cooperative: Eachagentis motivatedto cooperateif possiblewith its
neighborgo achiere globalgoalswhile satisfyinglocal constraintsand
doesnotknowingly lie or intentionallygive falseinformation.

We requirethatall agentsbe capableof negotiationin which they sharea
commonvocahulary thatenablesnmessageinderstandingandthateachagent
knows whatresourcesnaybe usedor controlledby a non-emptysubsebf the
otheragentsin the ervironmentso thatit candeterminewhom to negotiate
with. In our particulardomainof application,eachagentcontrolsthe sameset
of resourcessinceeachonecontrolsthe sametypeof sensarAlso, eachagent
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useghesamengyotiationmethodologybasedn case-baserkasoningbut the
individual casebasedliffer dueto the experience®f individual agents.

Formally, our multi-agentsystemarchitectureis definedasfollows. Sup-
posethatwe denotea multiagentsystemas(2. Supposehatwe defineaneigh-
borhoodof an agentw;, ¥,,, suchthat ¥,. C Q, ¥, # 0, andthatthe
agenta; knows aboutall otheragentsin the neighborhood. Thus, we have
a;, 0 € Uy, ViAo, ) wherel(a, b) meansagenta knows aboutthe ex-
istenceof agentb and can communicatewith agentb. A neighborhoodis
differentfrom a teamasdefinedin [Tambe1997], sincea teamis task-drven
andis formedamonga setof agentdo accomplistatask.A neighborhoodopn
theotherhand,is a subsebf agentof themultiagentsystemthatcouldform a
team.In our particulardomainof application,aneighborhoodonsistf a set
of agentghatcontrolsensorshatarephysicallycloseto eachotherandwhose
sensingcoverageoverlap. So, in our multi-agentsystems?, thereis a setof
neighborhoods(2 = {¥,,, ¥,,, ¥4, }, andeachneighborhoodanform ary
numberof teams.Neighborhoodslo not necessarihhave the samenumberof
membersandneighborhoodsnay evensharemembers.

In Sectionl1.2 we presentthe formation of the initial coalition basedon
the agents’previous experiencewith their coalition partners.In Section1.3
we discusshow an agentcan allocatetasksto the coalition members. Sec-
tion Sectionl.4 addresselow aresource-sharingoalitionis finalizedusing
our agumentatre negotiationmodel,the applicationof case-basetkasoning
(CBR), satisficingallocationalgorithms andalsoaddressetherole of learning
in our framework. In Sectionl.5we discusshow thefinal allocationof tasks
andresourcess announcedo the coalition membersand how commitments
aremade. We presentanddiscussour simulationandexperimentalresultsin
Sectionl.6. In Sectionl.7we briefly discusgelatedwork to ourresearchand,
finally, in Sectionl.8we presenbur conclusions.

2. Initial Coalition Formation

Whenpromptedby the changesn the ervironmentto solve anew problem
anagenttakesontherole of a negotiationinitiating or initiator agent.Theini-
tiator thendescribeghe problemparametricallypbasedon whatit obseresin
theervironmentandalsoonits own currentstate.This parametricdescription
helpsguidetheidentificationof coalitioncandidatefrom amongtheneighbors
of the initiating agent. To establishwho canprovide usefulresource®r per
form certaintasks theinitiator usests knowledgeprofile of its neighborhood.
This knowledgeprofile consistsof the nameandthe communicatiorchannel
of eachneighboringagent,aswell asthelist of resourceghatagenthasand
the tasksthat agentcanperform. By matchingthe neighborprofile with the
profile of the problem,the initiator selectscoalition candidatesandforms an
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initial coalition. Sincecomputationaresourcesare limited, and negotiation
consume<CPU and communicatiorbandwidth,the initiator doesnot startto
negotiatewith all membersof the coalition at onetime. Insteadit ranksits
potentialcollaboratorsandtheninitiates negotiation selectvely with the top-
rankedagents Rankingof thecoalitionmembersisloneusingamulti-criterion
utility-theoreticevaluationtechnique.

The potentialutility of a candidateisa weightedsum of its ability to help
towardsthe problemat hand, its pastrelationshipwith the initiator, and its
currentrelationshipwith the initiator. Formally, we expresspotentialutility,
U*,as

U:ckai = W(ai7 ej) [TelpaSt,di(ak,t)a Telﬂowﬂi (ak,t)a abilityai(aka ejat)]

where

Wpast,a;,e;
W(ai7 e]) = wnow,ai,ej

Wability,a; ,€j

andwpast,ai,ej + Wnow,ai,e; T Wability,ai,e; = L.

Thetermswyast,a;,e;» Wnow,a;,e;, and Wability,a; e areweightsusedby the
agenta; to factorthreegroupsof attributes: pastrelationship currentrelation-
ship, andthe abilityof the candidateo performthe requestedask. Note that,
ultimately theseweightsmay be dynamicallydependenbn the currentstate
of a; andthetaske;. Theterm,U™* is the potentialutility of candidateagent
ay, asseerby agenta;, andt refersto time. Theterm, relpqst q; (o, t), is the
pastrelationshipvalue betweenthe candidatex;, andthe agenta;. Theterm,
relnow,a; (0k, t), representshe currentrelationshipvalue betweerthe the ini-
tiator andthe candidateagents.Finally, ability,, (o, €5, t), representsbility
valueof the candidatey;, computedoy agenta;.

The currentrelationshipis basedon the interactionsbetweentwo agents
at the time whenthe coalition is aboutto be formed. The pastrelationship,
however, is collectedover time, andit enablesanagentio adaptits behaior in
forming coalitionsmoreeffectively.

Ability: Theability valueis basedn a setof generaheuristicsanddomain-
specificcriteria. Thegeneraheuristicsare:

1 theuniquenes®f a givenresourceor functionality thata candidatecan
provide relatedto the problemat hand,

2 the quality of the resourceandfunctionality that a candidatecan offer,
includingvolume,duration,efficiengy, andsoon,

3 how mary resourceshatareusefulin solvingthe problemthecandidate
has,or how mary differentfunctionscanthe candidateperformtowards
solvingtheproblem.
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In addition to thesegeneralheuristics,evaluation also involves domain-
specificcriteriawith which we examinethe quality of the resourceandfunc-
tionality of the candidatedriven by their applicability to the problemat hand
asdeterminedy domain-specificequirements.

Curr ent Relationship:Supposehat the maximumnumberof concurrent
negotiationsthatanagentcanconductis IV, thenumberof tasksthatthe agent
is currentlyexecutingasrequestedby thecandidates ¢, thenumberof all tasks
thatthe agentis currentlyexecutingis 7', andthe numberof ongoingnegotia-
tionsinitiated by theagentto its candidatds n. Then,the currentrelationship
valueis aweightedsumof thefollowing attributes:

= neyotiationstrainbetweerthe agentandthe candidaten /N,
= negotiationleveragebetweertheagentandthe candidatez /N, and

= degreeof strainimposedon theagentby the candidatez /T

Thefirst attribute approximates©ionv demandinghe agentis of a particular
neighbor The more neggotiationsan agentis initiating with a neighbor the
moredemandinghe agentis andthis strainsthe relationshipbetweerthe two
agentsandnegotiationmaysuffer. Thelasttwo attributesareusedasleverage
thattheagentcanuseagainsta neighborthatit is negotiatingwith.

The currentrelationshipcanbe computedreadily from the statusprofile of
theagentof its tasksandthe negotiationprocesses.

Past Relationship:Supposéhat

(a) thenumberof all previous negotiationrequestsnitiated by the agentto
thecandidatés NegAtoCh.q,

(b) the numberof all previous successfulhgyotiationsinitiated from the
agentto the candidatés NegAtoClyce,

(c) the numberof negotiationrequestgrom the candidateto the agentthat
theagentagreedo entertainis NegCtoAsycc,

(d) thetotal numberof all negotiationrequestsnitiated by the agentto all
its neighbords NegAotreq,

(e) thetotal numberof all successfuhegotiationsinitiated by the agentto
all its neighborss NegAotsuces

(f) thenumberof all previousnegotiationrequestsnitiatedby thecandidate
to theagentis NegCtoA, 4,

(9) thenumberof all previous successfuhegotiationsinitiated by the can-
didateto all its neighbords NegC'otsuce, and



(h) the numberof all previous negotiationsinitiated by the candidateto all
its neighbords NegCiotreq-

Thepastrelationshipvalueis aweightedsumof thefollowing attributes:

t:NegAtocsucc

(a) thehelpfulnesof the candidateo theagen NegAtoC ey

tN egAtoCreq

(b) theimportanceof the candidateto theagent o

(c) therelianceof theagenton the candidatefAioCsuee
9Atotsuce

(d) thefriendlinessof theagentto the candidatefi uuee

(e) thehelpfulnesof the agentto the candidatelv—:]\ffg;f;“jj :

NegCtoAreq

Negctot'req ! and

() therelative importanceof theagentto the candidat

t:NegCtOAsucc

(9) therelianceof thecandidateontheagen NegCroperss.

Theseattributesarebasedon datareadily availablewheneer the agentini-
tiatesa negotiation requestto one of the candidatesor wheneer it receves
a requestirom oneof its neighbors. The higherthe value of eachof the at-
tributes, the higherthe potentialutility (U*)the candidatemay contritute to
thecoalition.

Attributes(a)-(c)tell theagenthow helpfulandimportanta particulameigh-
bor hasbeenandareusedto estimatehe chanceof having a successfuhego-
tiation with the candidatebasedon how the candidatehasbehaedin its past
interactionswith the agent. The more helpful andimportantthat neighboris,
the betterit is to includethat neighborin the coalition. Attributesd-g imple-
mentasensef socialreciprocityintheagentinteractionsn acoalition. Agents
areprogrammedo bemorewilling to assisotheragentghathave beenuseful
to themin the past. So, the agentexpectsa particularcandidatethat is has
helpedin the pastto be gratefulandmorewilling to agreeto a requestased
onthe agents friendliness helpfulnessandrelative importanceto thatcandi-
date.Finally, theinitiator makesuseof the potentialutilities to carry out task
allocationsandassignmentsBasedon the overall potentialutilityof theinitial
coalition,theinitiator maywantto lower its demandso improve the chanceof
forming acoalition. By the sametoken, if thepotentialutility of acandidatas
high, thentheinitiator maywantto askmorefrom thatcandidate.

Whenan agentapproaches candidatethe candidatesxaminesits current
andplannedactvities againstherequestedask. If the candidateealizesthat
therequestedaskis doable thenit agreedo negotiate.Otherwise|jt refuses.
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3. Allocation Algorithms

After aninitial coalition containingagentsthatis believed will be willing
to helpin the taskis formed, the initiating agenthasto decidehow to prop-
erly requestasksor resourcegrom eachinitial coalition member Previously
SohandTsatsoulisproposedseveral resourceallocationalgorithms[Soh and
Tsatsouli2002c],which we summarizehere. The goalsfor the designof our
allocationalgorithmsinclude improving the chanceof a final coalition for-
mationon time andwith incompleteinformation, the robustnessof the final
coalitionformation,andheability of thefinal coalitionto changedynamically

After theinitial coalitionis determinedtheinitiating agentneedgo design
a task allocationplan.Basedn the potentialutilityof a candidateagent,the
initiating agentmatchesa particulartaskin the planto a candidate If thereis
at mostonetaskassignedo a candidatewe call the assignmeni-to-1, and
many-to-1lotherwise. We identified four (non-eclusive) typesof allocation
algorithmspriority-based, flexibility-bounded greedy andworried.

Priority-Based:In this schemewe rank eachsubtaskbasedon the maxi-
mum potentialutility of eachcandidateperformingthat subtask. Given the
ranked list, the agentfirst assignghe top-ranled subtaskdo their respecire
candidatesAs aresult,it is possiblethata candidatamay be overloadedwith
all subtasksandanothercandidateloesnotreceve ary assignment.

Flexibility-Bounded: The numberof coalition membersthat an initiating
agentcan approachis boundedby its available resource. For example, the
numberof coalitionmembergo beapproacheds determinedy thenumberof
negotiationtasksthatcanberun currently andtheavailability of computational
resourcehatthe agentcurrently hasto supportthe eventualnegotiations. As
aresult,we have to performlazy taskshufling thattriesto dumpall the extra
assignmentmto thefirst (andtop-prioritized)task-candidatpair. Thismaybe
rational,asthefirst candidatessociatewvith thetop-prioritizedtask-candidate
pairis morelikely to becomea usefulcoalitionmember

Imperfect Coalition and GreedyAlgorithms: Whenaninitiating agentis
facedwith a dilemmawhereit hasmore negotiationsto performthanit has
availableresource$o conducthegotiationswith its coalitionmembersit either
quits or continueswith as mary negotiationsas possibleto recruit as mary
coalition membersas possible. This is feasiblesince eachagentis capable
of forming a coalitiondynamicallyon its own, and,if theinitiating agentcan
getthe messag®ut, thenthe hopeis thatthe coalition memberswill passthe
messagealongto their own coalitionmembersSo,aninitiating agentdoesnot
necessarihave to planfor a perfectcoalitionsolutionfor anevent. Moreover,
it is unlikely to build a perfectcoalition solution even with a perfectplan,
sincethe coalition formation processissubjectedio dynamicchangesn the
ervironment,noisemessagéoss,refusaldo nggotiate andfailednegotiations.
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The greedyalgorithmmakesuseof a modified prioritized utility scorecalled

thefocusedutility thatemphasizes all the subtaskshatthe candidateknows

how to perform,from the viewpoint of theinitiating agent.If a candidatenas
C functional capabilitiesthat suit the subtaskghat the initiating agentwants
done,thenit hasC' suchfocusedutility values.For example,if the candidate
doesnot do subtask?" well, but doesother taskswell, then the agentmay

assignsubtaskT" to the candidate.An initiating agentbecomegreedywhen
practicingthe above algorithmbecause

1 it triesto minimizeits own rationalizationandcomputingprocess,

2 it selectghe candidatewith the higheroverall utility valuesto approach
hopingfor a successfuhegotiation,

3 it caresmostlyabouthigh- priority tasks,

4 it triesto maximizeits chanceof gettinga particulartaskdoneby in-
cludingsub-utilitiesin thefocusedutility evaluation,and

5 it hopedo shiftits responsibility(partially) to thecandidatesia success-
ful negotiations,expectingthe candidate$o spavn their own coalitions
to helprespondo theevent.

Insurance and Worried Algorithms: Sincengyotiationscannotbe guaran-
teedto bealwayssuccessfulsomeinitial candidatesnaybedroppedirom the
final coalition. This alsoimpliesthat, if aninitiating agentreliestoo heavily
ononeparticularcandidatetheinitiating agentmaylosealarge portionof the
coalition’s utility. So, in the taskallocationandassignmenprocesswe can
build in someinsurancepolicies(i.e., somealternatve plans)atleastto absorb
the impactof suchscenarios.Of course,an initiating agentconsiderghese
plansonly whenit hasenoughcomputationatesources$o do so.

A worried algorithmassignsa subtaskio multiple candidates First, it as-
signseachsubtaskto the candidatewith the highestability performingthat
subtask.Then,if therearecandidateshat have not beenassigned subtask,
thealgorithmgoesthroughanotheroundof insuranceassignmentsThealgo-
rithm stopswhenall thecandidate$iave beenreachedNotethattheinsurance
assignmentasaresultof theworriedalgorithmswill beabortedoncetheiniti-
atingagenthasachieved a satishctorycoalition (e.g.,asdifferentnegotiations
completewith successes).

Over-Demanding and Caps It is possiblethat the lazy and greedyalgo-
rithms may end up assigningall tasksto a single agent. This becomesan
overdemandingscenaridhatcomplicateghe negotiation,and,asaresult,the
coalition may suffer. Hence,the numberof assignmentgor a candidatehas
to be boundedby a capthat canbe determineddynamically For example,if
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the primarytaskthattheinitiating agentwantsthe candidateo performis ex-
tremelyimportant,or highly unique thenit is betterfor theinitiating agentnot
to be overdemandingn its approacho the candidate.On the otherhand,if
the candidatehasbeenvery helpful andfriendly, thentheinitiating agentmay
beableto take adantageof thatrelationshipby over-demanding.
Supposeve denotethe capfor anassignmenp for candidatex, as| f,]q,
then[ fy]a, X relpast,a; (Qks 1), [fola, X Telnow,q; (ak,t), and
[fp-| ap X ]./G,b’&.lityai (aka €j, t)
Thesecapscanbeinsertednto all thealgorithmsabove to preventtoo mary
assignmentto asingleagent.

4. Coalition Finalization

After obtainingtheinitial coalition andthe coalition candidatesanked ac-
cordingto their respecire potentialutility values,andfter assigningtiasksto
eachone,theinitiator invokesthe coalitionfinalizationstepthatis performed
usingargumentatre negotiation. Thetaskallocationstepcreatesa negotiation
requestfor eachmemberof the initial coalition; the coalitioninitiating agent
will approachtheagentandnegotiatewith it for theresource/taskllocatedto
it. Ouragentsuseavariationof theamgumentaire negotiationmodel[Jennings
etal. 1998]in which it is not necessaryor themto exchangetheir inference
modelwith theirnegotiationpartnerssincethey areassumedo shareghesame
reasoningnechanismin addition,we assumehatanagentreasonsationally
andin goodfaith,andis cooperatre. Notethataftertheinitial coalitionforma-
tion, theinitiator knows who canandmighthelp. Hencethegoalof negotiation
is to find outwhois willing to help. Beforedescribingour negotiationmodel,
we introducesometerminology: an initiator or initiating agentis the agent
that requiresa resourceand contactsanotheragentto starta negotiating ses-
sion,andarespondingagent(or responder)s the onethatis contactedvy the
initiator (Seealso[SohandTsatsouli2001a]).

First, the initiator contactsa coalition candidateto starta negotiating ses-
sion. Whenthe candidateor respondengreedo negotiate,it computesa per
suasionthresholdhat indicatesthe degreeto which it needsto be corvinced
in orderto free or sharea resourceor performa task. Alternatively, onecan
view the persuasiornthresholdasthe degreeto which anagenttriesto hold on
to a resource.Subsequent|ythe initiator attemptsto corvince the responder
by sharingpartsof its local information. The responderin turn, usesa setof
domain-specificulesto establishwhethertheinformationprovidedby theini-
tiator pushest above aresources persuasiorthreshold,in which caseit frees
thenamedesourcelf theresponders notcorvincedby theevidentialsupport
provided by theinitiator, it requestsnoreinformationthatis thenprovided by
theinitiator. The neggotiation continuesbasedon the establishedtratgy and
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eventuallyeitherthe agentseachanagreementin which casearesourceor a
percentagef aresourcds freed,or the nggotiationfails. Notethat, motivated
to cooperatethe responderalso makes a counteroffer whenit realizesthat
the initiator hasexhaustedts agumentsor whentime is runningout for the
particularnegotiation. How to negotiatesuccessfullyis dictatedby a negotia-
tion stratgy,which eachagentdervesusingCBR. CBR greatlylimits thetime
neededo decideon a negotiationstrategy, which is necessaryn our realtime
domainsincethe agentdoesnot have to computeits negotiationstratgy from
scratch.

4.1 Negotiation Strategy

We definea ngyotiation strategyas the setof guidelines(or protocol) that
govern the behaior of an agentduring a particularnegotiation. In contrast
to otherwork in negotiationwherethe negotiatingpartiesfollow a predefined
staticprotocol,our agentsdynamicallyestablisha new stratgy dependingon
their currentstateandthe stateof theworld. Thegoalis to situatea negotiation
andto improve the chanceof its succesdy taking into accountthe dynam-
ically changingworld state. This is accomplishedy using CBR to select,
adaptandeventuallylearnnegotiationstratgies.

Sinceinitiating a negotiationandrespondingo onearefundamentallydif-
ferenttasks,eachagenthastwo differentcasebasesonewith stratgiesfor
initiating negotiationsandonewith stratgiesfor respondingo negotiationre-
guests.Casesf bothinitiating andrespondingnegotiation stratgies usethe
samedescriptionlanguagebut they involve differentstratgies. Eachcasealso
containghengyotiationstratgy thatwasusedn the pasttogethewith theout-
comeof that negotiationthat may indicatewhetherthe offer wasacceptedr
rejectedandwhetherthe negotiationranout of time or ranout of resourceso
continuefurther The stratgy tells the agenthow to conductthe negotiation.
For theinitiator, the negotiationstratey includesthefollowing:

1 aranking of the classef information it should useasarguments:
during a negotiation, eachagentattemptsto minimize the numberand
the length of messageg sendssincewith fewer messageghe agents
canavoid messagéossdueto communicatiorfailures,andreducetraf-
fic amongthe agents.The agentswantto sendshortmessageaswell,
sincethe transferof suchmessagesvould require lesstime and less
bandwidth.Thus,it is importantfor aninitiating agentto decidewhich
informationpiecesaremoreimportantto sendto therespondingagent

2 time constraint: how long (in realtime)theagentshouldbe negotiating,
sincethe target may leave the sensingareacontrolled by the current
agent



A Satisficing, Negotiated, andLearning Coalition FormationArchitecture — 13

3 number of negotiation steps: a stepis a completenegotiationcommu-
nicationactwheretheinitiator sendsagumentsandtherespondemales
a counteroffer or requestsnoreargumentdo becorvinced. Clearlythe
morestepsthatareallowed the higherthe chanceof reachinganagree-
ment,but alsothe moretime andresourcesrespent

4 CPU usage:moreCPUresourcesor anegotiationmeanfastemegotia-
tion, but alsolessCPU availablefor othertasks.

The respondehasa slightly differentnegotiationstratgy. It sharessome
elementof theinitiator’s protocol,specificallythetime constraintthenumber
of ngyotiationsteps,andthe maximumCPU usage)ut it alsointroducestwo
moreparameters:

1 power usage:this defineshow muchpower the responders willing to
useto turn onits sensor

2 persuasionthresholdsfor resources: aswe alreadymentioned,each
resourcehasa persuasionthresholdassociatedvith it which determines
how difficult it will be to corvince the respondeto free the resource.
The resourcesre radarsectorsfor performingdifferenttypesof mea-
surementgequiredto track a taiget, CPU allocation,and usageof the
RF communicatiorchannelsDiscreteresourcedik e turningon aradar
have a single-alued persuasiorthreshold. Continuousresourcedike
CPUhave alinearor anexponentialfunctionassociateavith them.For
example,if aninitiator corvincesarespondeby degreeX, thenthere-
sponderis willing to free N% of its CPU allocation;if it is corvinced
by degree (X + V) it will bewilling to free (N + M)% of its CPU,
whereN = f(X), M = f(X +Y) — f(X), wheref is eitheralinear
or anexponentialfunction,choserappropriatadlependingn thecurrent
scenario.

3 persuasionfunctions: eachis eithera linear or an exponentialfunc-
tion. We have chosenthesetwo typesof functionssincethey areeasy
to computeandrepresentwo differentconcedingoehaiors. Thelinear
function hasa uniform concedingrate, andthe exponentialfunctionis
morewilling to concedequickly. Thus,in situationswherea dealhas
to be madequickly, an agenttendsto choosean exponentialfunction
to guideits negotiation. Eachof the above functionsis modifiedby two
parametersconcedingateandwillingnessfactor Theconcedingateis
theslopein thelinearfunctionandthe cunaturein theexponentiafunc-
tion. Thewillingnessfactoris the amountof resourcethat an agentis
willing to give up whenthereis zeroevidence.With a persuasioriunc-
tion, therespondinggentalsomalkescounterofferswhenit realizeghat
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it is aboutto run out of the time that it hasallottedfor a particularne-
gotiationtask, or whenthe initiating agenthasno more argumentsto
provide.

4.2 Negotiation Protocol

Figure 1.1 shavs our negotiation protocolasa statediagrambetweentwo
agentsg andb. In thefigure,squaresepresenterminalstatesandthedouble-
circleis theinitial state.

channel_jammed

Figure 1.1. Thenegotiationprotocol

StateO is the initial state. Statel is the first handshag state,indicating
whetherthe initiated negotiationwill be entertained.State4 is the initiating
statewhile state5 is the respondingstate. The initiating stateis wherethe
initiating agent,a, returnsto, basicallythe processingoop of the negotiator
module. The respondingstateis wherethe respondingagent,b, returnsto,
respeciiely. Agenta initiatesa negotiationrequesto agentb by sendingan
INITIA TE messagéinitiate(a,b)), andthe statetransitionsto statel. At this
juncture therearefour possiblescenarios First, agentb may outright refuse
to negotiateby sendinga NO_.GO messagéno_go(b,a)). This resultsin a fi-
nal stateof failure (state2, rejected). Secondagentb may outright agreeto
the requestedask by sendingan AGREE messagdagree(b,a)).This results
in afinal stateof succesgstate3). Third, agentb maydecideto entertainthe
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negotiationrequestindthussenddbacka RESPONDmessagérespond(b,a)).
This transitionsthe stateto 4. Fourth, theremay be no responsdrom agent
b. Thusagenta, after waiting for sometime, hasno choicebut to declarea
no responsdgno.response(a)and movesto a stateof failure (state8, chan-
neljammed).Whenthe agentanove to state4, the argumentatie negotiation
beaginsanditeratesbetweerstates4 and5 until onesideoptsoutor bothsides
opt out or both sidesagree. During the negotiation, agenta provides infor-
mationor agumentgo b by sendingiINFO messageénfo(a,b)). Thenagenth
demandsénformationor argumentsrom a by sendinglORE_INFO messages
(more.info(b,a)). If agenta runsout of aguments,it sendsa INFO_NULL
messag#o b (info_null(a,b)). If agenth runsoutof patienceijt makesacounter
proposaby sendinga COUNTER messageo a (counterd,a)). Thenagenta
can agreeto the counteroffer (agreeg,b)), and the agenttransitionsto the
stateof succesgstate3), or provide moreinformation(info(a,b)) asrequested,
or provide no information (info_null(a,b)) if it hastime to do so, hopingthat
agenth mightcomeup with a betteroffer, or simply disagreegabort(a,b)).

Thus,aninitiating agentwill alwaysnegotiateuntil it hasrun out of time or
whenthe respondingagentoptsout. However, aninitiating agentmay abort
a negotiation, andthis is wherethe conditionscomeinto play. If the agent
realizeghatit hasalreadyobtainedwhatit wantsfrom othernegotiationshap-
peningin parallel,thenit abortsthe currentnegotiation. If the agentrealizes
thatit nolongercaresaboutthe currentnegotiation,thenit aborts.Thesecon-
ditionsarebasedn desiresandintentions which, in turn, arebasedn beliefs
of the agent. Whenan agentruns out of time, it issuesan OUT_OF.TIME
messagédo the other agentand quits the negotiation with a failure (state6,
out of_time). Whenanagentaborts,t issuesan ABORT messagé¢o theother
agentandquitsthengyotiationwith afailure(state7, abor). Finally, whenaer
anagentdoesnot hearfrom the otheragentwithin anallowed time period, it
assumeshatthe communicatiorchannehasbeenjammedor congestedand
thenit quitswith afailure (state8, channeljammed.

Note thatwe distinguishNO_GO, STOP, OUT _OF TIME, and ABORT in
theabove protocol. With theabove differentendstatesagenta candetermine
whetherthe negotiationhasfailed, becausét hasexhaustedall its aguments
(STOP). Otherwisejt subsequentliearnsfrom thefailure.

4.3 Case-Based Reasoning (CBR)

A casecontainsa problemdescription,a solution, and an outcome. The
problemdescriptiondescribeghe stateof the agent(tasksit is performing,
stateof theradar its battery etc.),the stateof the target (currentlocationand
speedprojectedpath,targettype,etc.),andthemodelof the potentialcoalition
memberghow mary, the numberthatactuallywereusedin negotiation,their
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capabilities,etc.) atthetime beforenegotiationis to take place. The solution
is anegotiationstratgy (Sectionl.4.1).

CaseSelectionand Retrieval: The CBR componenbf eachagentevaluates
caseausingweightedmatchinganddifferentmatchingfunctionsfor different
attributes.After evaluation themostsimilarcasewill beselectedHowever, if
thereis morethanonecasewith thesamesimilarity score the CBR component
then compareghe outcomeof the negotiationsand selectsthe casewith the
bestoutcome.

CaseAdaptation: Giventhe setof neggotiationstratgjiesfrom thebestcase,
the CBR componentadaptsthe parameterdasedon the differencebetween
the new caseand the bestcaseand also basedon the outcomeof the best
case. Sinceeachcaseis situated,the setof negotiation parameterdearned
from the bestcasemight not be applicablein the currentcase. Hence,the
CBR componenmodifiesthe parametersdasedon the perceved differences.
For example,if the currenttaigethasa higherspeedhanthe old taigetof the
bestcase thenwe allocatelesstime to conductthe negotiation. If the agent
is performingmoretaskscurrentlythanit wasin the retrieved case thenthe
agentsvould wantto uselessCPUresources.

Furthermorethe CBR componenimodifiestheparameterbasedntheout-
comeof thebestcase.lf thenegotiationof thebestcasefailed,andthis failure
wasbecausef the ngyotiationrunningout of the allocatediime, thenwe plan
for moretime. If the nggotiationfailed dueto lack of CPUresourcesthenthe
agentasksfor more CPU. In this manner agentsare ableto learnfrom their
experiences "good-enoughsoon-enough’etof neggotiation stratgies, and
they areableto learnhow to avoid repeatingpastfailures.

CaseStorageand Learning: After anegotiationis completedsuccessfully
or otherwise) the agentdelegatesthe caseto the CBR componenfor storage
andlearning. SeeSectionl.4.4.2for moreon this topic. The heuristicswe
useto evaluatethe similarity of two casesluring retrieval arevery similar to
thosewe useto evaluatethe differencebetweenwo casesvhendetermining
whetheranew caseshouldbelearnedor not. Duringretrieval, we useweighted
normalizedrules to scoreeachcasein the casebasand to selectthe most
similar casebasedonly on the situatedparameterslf therearetwo or more
suchcaseswe selectthe casewith the bestoutcometo increasehe utility of
theretrieval. Duringthelearningphaseijn additionto situationparametersye
evaluatethesolutionparameterg§i.e.,,thenegotiationstratgy parametersand
theoutcome.Theheuristicsareweightedandnormalizedrulesaswell.

4.4 Learning

Learningis critical in our coalitionformationarchitecture.lrour systemthe
coalition solutionsareonly satisficingandnot optimal. Without learning,our
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agentswill notbeableto improve on their coalitionformationskills, andthey
will notbeableto producecoalitionsthatarecloserto the optimalin termsof
theresourcesised.

In our model,therearetwo levels of learning. First, every agentevaluates
the utility of its coalition candidatewia reinforcementearningof pastnego-
tiation outcomesandbehaiors. As a resultof this learning,an agentassigns
its taskrequirementslifferently and approachesandidateagentsin different
orders,basedn whatit haslearnedfrom its interactionswith its neighborgn
the past. Second eachagentusesa CBR mechanismnto learn useful negoti-
ation stratgjiesthat guide how negotiationsshouldbe executedin the future.
Furthermorean agentalsolearnsfrom its pastrelationshipwith a particular
neighborwhenconductinga negotiationwith thatneighbor The collaboratve
learningbehaior allows two negotiationpartnersto reacha dealmoreeffec-
tively, andagentgo form bettercoalitionsfaster

4.4.1 Learning to Form Coalitions Better. Our coalition
formation stratgy is opportunistic,becauset tries to form satisficingsolu-
tions with no guaranteesindeed,a coalitionformationcannotbe guaranteed
sincethe communicatiormediumthatis availableto theagentsdoesnot guar
anteedelivery of eachoutgoingmessageln particular messagesentin this
ernvironmentmaybelost, corruptedor jammed.To improve thechanceof suc-
cessfullyforming coalitions,our agentsemplogy a learningmechanismaimed
atenablingthemto learnto form bettercoalitionsfasterin suchuncertainen-
vironments. When a coalition is initially formed, an agentis motivatedto
go back to the sameneighbor(for a particulartask) that the agenthashad
productie relationshipin the past. Hencethe reinforcementearning,which
strengthenpastgood relationshipswith otheragentsandwealensthosethat
have not beenas productve. When an initiating agentsendsover different
classe®f informationto arguewith therespondingagent,oneof theinforma-
tion classedncludesa profile of the neighborincluding its pastrelationship
with therespondingagent.As aresult,the respondingagentmay have arein-
forced motivation to agreeto a negotiationbasedon its previous interactions
with the initiating agent. The moresuccessethe initiator hashadwith a par
ticular responderthe more effectively it canamguewith that neighbordueto
its reinforcement-learmkattributes.

We alsouseCBR to retrieve and adaptnegotiation stratejies for negotia-
tions. Whena negotiationis completed the agentalso determinesvhether
to learnthe new case. The case-basetkarningis performedin two modes,
namely in incrementabndin refinemenimode. During incrementalearning,
anagentmatcheghenew caseo all casesn thecasebasendif thatnew case
is significantly differentfrom all otherstoredcasesit storesthatnewv casein
its casebaseaVhenwe wantto keepthe sizeof the casebasandercontrol,we
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userefinementearning,replacingthe mostsimilar old casewith the new case,
if thereplacemenivill increasehediversity of the casebase.

4.4.2 Learning to Negotiate Better. Beforeanegotiationcan
take place,anagenthasto defineits negotiationstrategy, which it doesusing
the retrieved mostsimilar case.Note that a betternegotiationdoesnot mean
onethatalwaysresultsin anacceptedleal; a betterneggotiationis onethatis
effective and efficient, meaningthat a quick successfuhegotiationis always
preferredput if anegotiationis to fail, thena quickly failed negotiationis also
preferred. To formulatea new task,an agentcomposes new problemcase
with a situationspace.Thenit retrievesthe mostsimilar casefrom its case-
baseusinga weightedparametrianatchingon the situationspacesGiventhe
mostsimilar casetheagentadaptghatsolutionor negotiationstratgy to more
closelyreflectthe currentsituation. Equippedwith this modified negotiation
stratgy, the agentproceedswith negotiation. Finally, whenthe negotiation
completestheagentupdateshe casedependingon the outcome.

Refinementand IncrementalLearning: After aneyotiationis completed
(successfullypr otherwise)theagentupdatests casebasasinganincremental
andarefinementearningstep.Duringincrementalearning theagentmatches
the new caseto all casesn the casebaseand,if the new caseis significantly
differentfrom all otherstoredcasesthenit storesthe newv case. Whenthe
agentcomputeghedifferencebetweera pair of casesit emphasizemorethe
casedescriptionthanthe negotiation parametersinceits objectie is to learn
casesthat cover as much of the problemdomainas possible. This kind of
learningimprovesthe agents future caseretrieval andcaseadaptation So,an
agentiearnsgoodanduniquecasesncrementally

We definethe casedifferencemeasures
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Sincewe wantto keepthesizeof thecasebasi check,especiallyto enable
quick caseretrieval andlow-costmaintenancethe agentperformsrefinement
learning.If thenew caseis foundto bevery similarto oneof theexisting cases,
thenit computeghe sumof differencede.g.,> Diff (a,b)) betweerthatold
caseandthe entire casebaseninusthe old case.It alsocomputeghe sumof
differencedetweerthe nev caseandthe entirecasebaseninusthe old case.
Thesecomputationestablishthe utility of the new caseandthe old case(that
the agentconsidergo replacewith the new case).The agentchoosedo keep
the casethatwill increasehe diversity of the casebase. Thus,if the second
sumis greaterthanthefirst one,thenthe agentreplaceghe old casewith the
new one. In this mannerwe graduallyrefinethe casesn the casebasevhile
keepingits sizeundercontrol.

5. Coalition Acknowledgment

After a coalition hasbeenagreedupon, meaningthat all negotiationtasks
have now terminatedthe agenthasto acknaviedgethe coalition. If the coali-
tion is a failure, then the agenthasto sendout a discardmessageo each
coalitionmemberthathasagreedo a deal,to cancelthe deal. If the coalition
is asuccessthentheagentmustsendouta confirmmessagéo thesamecoali-
tion members.This acknavledgmentis necessaryor effective taskplanning.
Coalition acknavledgmentenablesesponsiblecoalition formation: First, an
initiating agentis responsiblein thatit informs coalitionmemberof the suc-
cessor failure of the coalition andreleaseghe coalition memberdrom their
agreements caseof acoalitionfailure causedy othernegotiations.Second,
arespondingagentmay unilaterallyreleasatself from its agreemenif it does
not receve a confirmationof an agreedask. This coalition acknaviedgment
stepis a featurethat allows the initiator to conductconcurrentnegotiations
asynchronously

6. Experimental Results

In this section,we presentresultsfrom threesetsof experimentsthat we
have conductedwith our multiagentsystemappliedto the domainof multi-
sensortracking. In thefirst experiment,we studiedthe role of the case-based
negotiationstratgy in negotiation. In the secondexperimentwe investigated
the effectivenesof our coalitionformationmodel. In thethird experimentwe
examinedtheimpactof learningin coalitionformationandnegotiationeffec-
tiveness.

6.1 Case-Based Negotiation Strategy

The experimentswe ran concentratetn evaluating whethernegotiation
would improve tamgettrackingperformanceandwhetherCBR resultedn bet-
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ter negotiation stratgies. Oneof our hypothesesvasthat negotiatingagents
wouldtracktamgetsbettersincethey areableto coordinateadarmeasurements
amongmultiple agentsand achieve improved triangulationas a resultof this
coordinationthatresultsfrom negotiation. Anotherhypothesisvasthat nego-
tiation usingCBR wouldresultin bettertrackingthanusingastaticnegotiation
protocol,sinceCBRwould allow dynamicadaptatiorof thestratey to thecur
rent situation. Our experimentsconfirm thesehypothesesln additionto the
accuray of tracking,we usedaspect®f intra-agentommunicatiorasa mea-
sureof quality of performancesincecommunicatioris a potentialbottleneck
in scaling-upa multiagentsystem. For the contritution of communicatiorto
the overall performanceof our system,we usedthe length of messageshe
frequeng of thetype of messagesasnda metric calledmessge cost whichis
definedasmessagéengthtimesmessagérequeng.

We comparedur systemto a multiagentsensorcontrolling network where
thereis no communicatioramongsensotcontrolling agentsor negotiationor
otherpurposesegxceptfor thecommunicatiorbetweereachsensoicontrolling
agentanda specialagent,the tracler, to which sensingdatais sentfor trian-
gulation. Therefore,in this setup,all that eachagentdoesis to make mea-
surementof a tamget it detectsin its sensors coverageareaand sendthese
measurement® the tracker agent. Next, we comparedur case-basedego-
tiating agentsto a systemwhereneggotiationusesa predefinedstatic stratayy.
We selectedhestaticstratgy carefullyto make sureit shouldbe adequatéor
mostcases.In generaltheresults,summarizedn Figuresl.2—1.5werevery
encouraging.
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Figure 1.2. Trackingaccurag vs. agentbehaior

The agentswhich usedno negotiationsentalmost20% moremessagebut
had almost27% worsetrackingaccurag thannegotiatingagents. The non-
negotiatingagentsexchangedho messagesndonly senttheir measurements
to the tracking software. Sincetherewasno coordinationof measurements
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Figure 1.3. Numberof message® agentsandto trackingsoftwarevs. agentbehaior

amongmeasuringagents therewere too mary messagesentto the tracler.
On the otherhand,we alsofound that suchmessagesre shortcomparedo
algumentsexchangedetweenagentsduring negotiation, resultingin a lower
messageost(the productof the averagelengthandthe total numberof mes-
sagessentper second.) Sincetherewas no cooperationto triangulatemea-
surementsthe resultingtrackingaccurag waspoor The agentsthat useda
static nggotiation stratgy faredworsethanthe onesthat useda case-based,
adaptve stratgy. Specifically the agentsusinga staticprotocolsentapproxi-
mately 10% fewer message&houghwith a slightly highermessageost)and
hadalmost18% worseaccurag thanthe case-basedejotiatingagents.The
messageostis dueto the factthat the case-basedgentschangethe ranking
of theagumentshey communicatdasedon the situation. This rankingleads
to moreeffective communicatioractsoverall. Theaccurag is dueto thefact
that case-basedgentsadapttheir nggotiationstratgy to the currentsituation
andhave a higherchanceof achiezing agreementor resourceallocation. On
the otherhand,agentsusingthe staticstratgy failedto agreemoreoften,and
this led to failureto performsimultaneousneasurementhatarerequiredfor
mostaccurateracking.

Overall, our agentsexhibit all of the behaior described.They useCBRto
selectandadapta negotiationstrat@y, they have time andsystemawareness,
negotiate for sensoruse, and learn the new neyotiation stratgjies they have
developed. Most importantly the agentsachieve the high-level goal of the
system:they tracktametstraversinganareacoveredby multiple sensors.

6.2 Coalition Formation

In this experiment,the total numberof attemptsto form a coalition was
150. The total numberof coalitionssuccessfullyformed (after coalition fi-
nalization)was 30, or 20%. The total numberof coalitionsconfirmedby all
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Figure 1.5. Percentagef successfuhegotiationsvs. negotiationstratey type. A successful
negotiationis onethatcompletesvith adealbetweerthetwo negotiatingagents

coalitionmembersvas26, or 86.7%of all successfullformedcoalitions.Fi-
nally, thetotal numberof coalitionsexecutedon time was18, or 61.5%out of
all successfullyconfirmedcoalitions.

First,thepercentagef successfullformedcoalitionswasonly 20.0%.0ut
of the120failedattemptsB86 (71.7%)of themwerecausedy oneof thecoali-
tion membersoutright refusingto negotiate, 17 (14.2%)were causedoy the
communicatiorchannelseingjammed,and17 (14.2%)werecausedy busy
negotiationthreads.Whenan agentinitiatesa negotiationrequesto a candi-
dateandthatcandidateammediatelyrefusedo entertainthe negotiation,it can
bedueto therespondingageninothaving idle negotiationthreadspr beingun-
ableto placetherequestedaskinto its job queue.Thus,we expectthis failure
rateto decreas@ncewe increasehe numberof negotiationthreadsallocated
per agent. When an agentfails to senda messagéo anotheragent,or fails
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to receve an expectedmessagewe label this asa communicatior’channel-
jammed” problem. When an initiating agentfails to approachat leasttwo

candidatesit immediatelyabortsthe othernegotiationprocesghatit hasin-

voked for the samecoalition. This causeghe coalition to fail. Secondthe
probability of a successfullyformed coalition getting confirmedcompletely
was86.7%. For eachcoalition successfullyformed,threeconfirmationswere
required.Out of 30 coalitions,4 coalitionswereconfirmedonly by two of the
membersThereweretwo reasongor this:

» Theacknavledgmenimessagsentoutby theinitiating agentwasnever
receved by therespondingagentexpectinga confirmation.

s Theagreedaskhadbeenremoredfrom thejob queuebeforethe confir
mationarrived.

The failure of messageeceptioncould be dueto jammedcommunication
channelsr dueto randommessagéssdueto theunreliability of thecommu-
nicationchannellThesecondailureoccurrecbecausef acontentiorfor aslot
in the job queueby two separatdasks. Now, supposédhat both negotiations
are successful.The negotiation betweenA and B henceendsfirst andthen
thatbetweend andC. Whenthefirst neggotiationends,agentA addsthe task
requestedy B to the job queue.Immediatelyafter, whenthe secondnegoti-
ationalsoendssuccessfullyagentA addsthe secondask,requestedy C to
thejob queue andthis causeghe secondaskto replacethefirst task. Thisis
aproblemwith overcommitment.

Third, the probability of a confirmedcoalitiongettingexecutedwvas61.5%.
Outof 26 coalitionsconfirmedonly 16 of themwereexecutedcompletely Of
the 10 failures,thereweretwo casesvherenoneof the membersexecutedits
plannedtask. Therewasone casewhereonly one of the membersexecuted,
andseven caseswvhereonly two membersexecuted. Basedon the above re-
sults,we areinvestigatingsolutionsto addresghe following problemsin our
multiagentsystem:

»  ChannellammedTo preventnegotiationmessagesom gettinglostand
holdingup negotiationthreadsa betteruseof theavailablecommunica-
tion channelds needed.This will increasesignificantlythe chancefor
responsandacknavledgmenimessage berecevedontime, and,in
turn, the successateof coalitionformation.

m Task Contentionand Over-Commitment: Currently if an agentis ap-
proachedby two otheragentsfor two separatdasksaroundthe same
time slot, the agententertaindoth requestand may run into taskcon-
tentionin its job queueandovercommitment.
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m  Time Modeling: Sensoirelatedtasksmustbe modeledmorecloselyto
helpplanandschedulea compactandsensiblgob queue We have per
formedtime profiling onvariouscallsandhave foundthatsensowrelated
taskshave a high variancein their executionduration.We needto deter
mine the boundssuchthat a trackingtask canbe safely schedulecand
expectedo be executed.

6.3 Experiments with Learning

We ran two basicexperimentsto examine the impact of learningin our
agents. In the first, we investigatedthe effect of reinforcementearningin
the quality of the resultingcoalition. In the secondwe analyzedthe quality
of thenegotiationasafunctionof learningnew case®f nggotiationstratgies.
We concludedhatthe quality wasbasedon the numberof successfuhegoti-
ations,sincewhenthe agentsreacha negyotiateddealto jointly track a tamet,
the overall systemutility increaseslnitial resultsindicatethattheagentdform
coalitionswith partnersvho aremorewilling to accommodatéhemin negoti-
ation,andthatthe casedearnedarebeingusedin future negotiations.Agents
thatuselearningof negotiationcaseshave betweem0%and20%fewer failed
negotiations.Agentsthatusereinforcementearningto determinduture coali-
tion partnerdendto preferneighborsvho aremoreconceding.

We also conductedexperimentswith four versionsof learning: (1) both
case-baselkarningandreinforcementearning(CBLRL), (2) only reinforce-
ment learning (NoCBL), (3) only case-basedearning (NoRL), and (4) no
learningat all (NoCBLRL). Figure 1.6 shavs the resultin termsof the suc-
cessratesfor negotiationsandcoalition formations. As the graphindicates,
theagentdesignwith bothcase-baselgarningandreinforcementearningout-
performedothersin bothits neggotiation successate and coalition formation
successate. Thatmeanghat, with learning,the agentsvereableto negotiate
moreeffectively (andperhapsmoreefficiently aswell) thatled to morecoali-
tions formed. Without either case-basetkarningor reinforcementearning
(but not both), the negotiation successatesremainedaboutthe samebut the
coalitionformationratetendedto deteriorate This indicatesthat, without one
of thelearningmechanismsthe agentswverestill ableto negotiateeffectively,
but may be not efficiently (resultingin lessprocessingime for the initiating
agentto post-procesanagreement)Without bothlearningmechanismghere
was significantdrop in the negotiation succesgate. This indicatesthat the
learningmechanisméelpedimprove negotiationperformanceUnfortunately
theimprovementachiered by learning,althoughpresentjs smallanddoesnot
seemassignificantaswe hadinitially hypothesized.

The resultsreportedin this chapterneedto be scrutinizedfurther to iso-
latelearning,monitoring,detectionyeasoningcommunicationandexecution
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Figure 1.6. Successatesof nggotiationsandcoalitionformationsfor differentlearningmech-
anisms

component# the evaluation: An agentthatis busytrackingwill notentertain
aneggotiationrequesthatrequirest to give uptheresourceshatit is currently
usingto track. Thatrefusalleadsto a failure on the initiator’s side. Another
pointworth mentioningis the realtimenatureof our systemandexperiments.
Addedlearningstepsmay causean agentto losevaluableprocessingime to

handlea coalitionformationproblem.Morerequentcoalitionformationsmay
prevent other negotiationsto proceedas more agentswill betied up in their

scheduledasks.Our currentwork is examininghow casemaintenancestrate-
gies canbe usedto prunethe learnedcasebasefrom deleteriouscasesand
thusimprove the performancef learning.

7. Related Work
7.1 Coalition Formation

A definitionfor rationalcoalitionis givenby KahanandRapoport.This def-
inition stateghata coalitiongameis basedn thetotal utility thatthemember
of thecoalitioncanachiere by coordinatingandactingtogetherassuminghat
informationis complete[KahanandRapoport1984]. Our problemdomainis
not superadditie in which a memgedcoalition of ary pair of sub-coalitionds
betterthanary pair of sub-coalition©peratingndividually aswe have to con-
sidercoalitionformationcostssuchascommunicatiorandcomputatiorcosts.
Furthermoresub-additrity doesnotapplyto our model.

Shehoryetal. relaxsomeof therestrictve assumptionsf theoreticakoali-
tion formation algorithmsfor a real-world system[Shehoryet al. 1997]. In
their model, eachagenthasa vector of real non-n@ative capabilities. Each
capabilityis a propertyof anagentthatquantifiesits ability to performa spe-
cific typeof actionandis associatedavith anevaluationfunction. Theauthors’
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modelassumeshatall agentknow aboutall of thetasksandtheotheragents.
In ourmodel,aninitiating agentknows only theagentsn its neighborhoocnd
knows partially aboutthe updatedstatusof a selectve subsef its neighbors
afternegotiation. The detailsof intra-coalitionalactiity arenotnecessaryor
agentsoutsideof the coalition in the authors model [Shehoryet al. 1997].
On the contrary in our model, an agentperformsa task contrikuting to that
coalitionandtheexecutionof thisis reflectedn theagents commitmentsgon-
straints,andperceptions ShehoryandKrausfurther extendthe work by She-
hory etal. [Shehoryetal. 1997]by incorporatingnegotiations,computational
and communicationcosts[Shehoryand Kraus 1998]. This modelis similar
to ours. However, our modelallows an agentto conductmultiple concurrent
negotiations,andadjustsits negotiationstratgiesto redesigrits coalition.

Sandholmand Lesserintroducea boundedrationality in which agentsare
guidedby performancerofilesandcomputatiorcostsin their coalitionforma-
tion procesgSandholmandLesserl995]. In traditionalcoalitionformation,a
rationalagentcansolve the combinatorialproblemoptimally without paying
a penaltyfor deliberation.In our model,the agentsdo not pay a penaltyper
se. Instead,the agentswill feel the impactof poor coalition formation and
negotiation processeslf a coalitionis poorly designedjt may conflict with
the numberof availablenegotiationthreadshatanagenthas. If a negotiation
stratgy is poor, thenthe agentmay have to abortthe negotiationdueto the
realtimehardlimit onthe particularnegotiationprocessindeed the designof
our modelis drivenby boundedationality of time andresourceconstraints.

TohmeandSandholnstudycoalitionformationamongself-intereste@agents
that cannotmale side-paymentsthatis, agentsreward eachotherwith pay-
mentsfor agreemento join somecoalition, makingthe evaluationof a coali-
tion solelyonits utility [TohmeandSandholml999].

Senand Dutta proposean orderbasedgeneticalgorithm as a stochastic
searctprocesgo identify theoptimalcoalitionstructurd SenandDutta2000].
A significantdifferencebetweenthis work andoursis the scopeof coalition
formation. Theauthors’algorithmsearches$or an optimal coalitionstructure,
which consistsof all the agentsn the ervironmentgroupedinto oneor more
coalitions.Our model,however, focuseson the formationof a singlecoalition
for a particulareventwhile allowing multiple coalitionsto be formedconcur
rently.

Otherwork in coalitionformationinclude[Zlotkin andRosenscheii994,
Ketchpel1994, Klusch and Shehory1996, Sandholmet al. 1999, Moon and
Stirling 2001].
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7.2 Negotiation

Negotiationcanbeusedby agentgo performproblemsolvingandto achieve
coherenbehaior in a multiagentsystem.Agentscannegotiatein afully pre-
scribedmannerwherethe negotiating partiesknow exactly whateachothers
costandutility functionsare, or whensuchknowledgeis learnedduring the
first stepof interactionin a negotiation[Kraus 1997,Kraus:1995]. Thereare
agentsthat negotiate using the unified negotiation protocolin worth-, state-,
andtask-drven domainswhere agentslook for mutually beneficialdealsto
performtaskdistribution [RosenscheimndZlotkin 1994, Zlotkin andRosen-
schein1996]. Agentscan also conductargumentation-basedegotiationin
whichanagentsendsver its inferencerulesto its neighborto demonstrat¢éhe
soundnessf its agumentdJenningsetal. 1998]. Finally, thereareagentghat
incorporateAl technigue§Chavez andMaes1996,Laasrietal. 1992,Zeng
and Sycaral1998)] and logical models[Kraus et al. 1998] into negotiation.
Therehasbeenwork in off-line learningof negotiationstratgiesusinggenetic
algorithmg[Matosetal. 1998]in a service-oriente@rvironment.

8. Conclusions

In this chapterwe describeda coalitionformationarchitecturghataimsat
obtainingsatisficingsolutionfor time-critical, noisy andincompleteresource
or taskallocationproblem.Becausef the natureof the stratgy, a coalitionis
not guaranteedo form successfullyespeciallywhenmessaggassingamong
agentds unreliable. To offsetthis unreliability, our architecturencorporates
learning.

In ourapproacheurcoalitionformationprocesss dividedinto threestages:
initial coalition formation, coalition finalization, and coalition acknavledg-
ment. Initially, coalition candidatesare selectedfrom an agents neighbor
hoodandsubsequentlyanked accordingto their respectre potentialutilities.
Next, duringthefinalizationphasethecoalitionis refinedandverifiedthrough
negotiations,whereinformationis exchangedoetweentwo agentsto clarify
commitmentsand constraints. The agentis able to coordinatedirectly and
indirectly througha coalition awarenessink with its negotiationthreads.Fi-
nally, the coalition acknavledgmentstepconfirmsor discardsalready-agreed
requests.This releasesn agentfrom needlesslyhonoringa lost-causecoali-
tion commitment.We have incorporatecutility theory case-basedeasoning,
argumentatie neggotiation, and realtimeexecutionin the abore methodology
anddesign.

We have built a multiagentsystemcompletewith end-to-endagentbeha-
ior. Our preliminary resultsare promisingin that an initiator was able to
form satisficingcoalitionsquickly. Our resultsalsoshav thatwe needto im-
prove themanagemerdf communicatiorchannelshandletaskcontentiorand
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over-commitmentandmodeldomain-relatedime constraintdetter We also

demonstratedxperimentallythatCBR-baseadhegotiationshelpedagentgo ne-

gotiate more efficiently and more successfullyindirectly helping the agents
track their tagetsmore accurately The agentsare reflectve of the system-
level resourceshey useandtime-avare.

Finally, we demonstrate@xperimentallythat reflective negotiating agents
cantrack tagetsmuchbetterthanagentsthat simply reactto the presencef
targetsin their ervironment. The reflective natureof the agentsallows agents
to schedulehe precisetime of measuremergndalsoexchangecomputational
resourcesleadingto fasterandmoreefficient processingOverall, our results
shaw that our agentsare ableto form coalitionsquickly andin time to track
amoving targetin the environments. The agentswereableto negotiate,plan
synchronizedrackingtasksandexecutethemaccordingly

Therearealsoseveralareaghatwe areinvestigatingactively:

1 Inter-coalitionandintra-coalitioncompetitions- taskdistribution, prior-
ities, "health” of coalitions,etc.

2 Coalition awarenessand the effects of coalition monitoring on speed
(how much should a negotiation processmonitor aboutthe coalition
whenngyotiating,andhow reflectve we wantthe nggotiationsto be of
the coalition)

3 Onlinelearningof bettercoalitionformationstrategiesthroughdistributed
cooperatre case-basektarningandby casebasemaintenance
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