
AAAI Spring Symposium on Collaborative Learning Agents, 2002 

Learning to Form Negotiation Coalitions in a Multiagent System 
Leen-Kiat Soh 

Computer Science and Engineering 
University of Nebraska 

115 Ferguson Hall 
Lincoln, NE  

(402) 472-6738 

lksoh@cse.unl.edu 

Costas Tsatsoulis 
Dept. of Electrical Engineering and Computer Science 

Information and Telecommunication Technology Center  
University of Kansas  
Lawrence, KS 66044 

(785) 864-7749 
tsatsoul@ittc.ukans.edu

  
Abstract     

In a multiagent system where agents are peers and collaborate 
to achieve a global task or resource allocation goal, coalitions 
are usually formed dynamically from the bottom-up.  Each 
agent has high autonomy and the system as a whole tends to 
be anarchic due to the distributed decision making process.  
In this paper, we present a negotiation-based coalition forma-
tion approach that learns in two different ways to improve the 
chance of a successful coalition formation.  First, every agent 
evaluates the utility of its coalition candidates via reinforce-
ment learning of past negotiation outcomes and behaviors.  
As a result, an agent assigns its task requirements differently 
based on what it has learned from its interactions with its 
neighbors in the past.  Second, each agent uses a case-based 
reasoning (CBR) mechanism to learn useful negotiation 
strategies that dictate how negotiations should be executed.  
Furthermore, an agent also learns from its past relationship 
with a particular neighbor when conducting a negotiation 
with that neighbor.  The collaborative learning behavior al-
lows two negotiation partners to reach a deal more effectively, 
and agents to form better coalitions faster.  

Introduction 
We have developed a multiagent system that uses negotia-
tion between agents to form coalitions for solving task and 
resource allocation problems.  All agents of this system are 
peers, and decisions are made autonomously at each agent, 
from the bottom up.  Each agent maintains its own knowl-
edge and information base (and thus has a partial view of 
the world) and is capable of initiating its own coalitions.  
Due to the incomplete view and the dynamics of the world, 
an agent is unable or cannot afford to rationalize to form an 
optimal coalition.  Hence, we have designed a negotiation-
based coalition formation methodology, in which an agent 
forms a sub-optimal initial coalition based on its current 
information and then conducts concurrent 1-to-1 negotia-
tions with the members of the initial coalition to refine and 
finalize the coalition.  To form better coalitions faster, we 
have incorporated two learning mechanisms.  First, each 
agent maintains a history of its relationships with its 
neighbors, documenting the negotiation experiences and 
using reinforcement learning to form potentially more vi-
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able and useful coalitions. Consequently, an agent assigns 
its task requirements differently based on what it has 
learned from its interactions with its neighbors in the past.  
Second, each agent has a case-based reasoning (CBR) 
module with its own case base that allows it to learn useful 
negotiation strategies.  In this manner, our agents are able 
to form better coalitions faster. 
 An agent maintains its own knowledge base that helps 
determine its behavior—who to include in a coalition, how 
to negotiate to convince a neighbor to be in the coalition, 
and when to agree to join a coalition.  As the agent contin-
ues reasoning, it adapts its behavior to what it has experi-
enced.  This in turn impacts its negotiation partners and 
collaborative learning is transferred implicitly, allowing a 
negotiation partner to update its relationship with the agent.  
This dynamic, negotiation-based coalition formation strat-
egy can be viewed as an effective and efficient tool for col-
laborative learning.  The efficiency comes from the fact that 
information is exchanged only when necessary during a 
negotiation. 
 The driving application for our system is multisensor 
target tracking, a distributed resource allocation and con-
straint satisfaction problem.  The objective is to track as 
many targets as possible and as accurately as possible using 
a network of fixed sensors under real-time constraints.  A 
“good-enough, soon-enough” coalition has to be formed 
quickly since, for example, to track accurately a target mov-
ing at half a foot per second requires one measurement each 
from at least three different sensors within a time interval of 
less than 2 seconds.  Finally, the environment is noisy and 
subject to uncertainty and errors such as message loss and 
jammed communication channels. 
 In this paper, we first discuss present our coalition for-
mation model.  Then we briefly talk about our argumenta-
tive negotiation approach.  After that, we discuss how rein-
forcement learning and case-based learning are used in the 
selection and ranking of coalition members, the determina-
tion of negotiation strategies, the task assignment among 
coalition candidates, and the evaluation of an on-going ne-
gotiation for evidence support.  Then, we present and dis-
cuss some results.  Before we conclude the paper, we out-
line some future work and interesting issues.  
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Coalition Formation 
In dynamic, distributed problem solving or resource alloca-
tion, an initiating agent (or initiator) must form a coalition 
with other agents, so that it can perform its task.  The mem-
bers of a coalition are selected from a neighborhood, a set 
of other agents known to the initiator.  In our application 
domain, an agent ia  is a neighbor to an agent ja  if ia ’s 
sensor coverage area overlaps that of ja .  An initiator first 
selects members in the neighborhood that are qualified to 
be part of an initial coalition.  Second, it evaluates these 
members to rank them in terms of their potential utility 
value to the coalition.  Third, it initiates negotiation re-
quests to the top-ranked members, trying to convince them 
to join the coalition.  In the end, the coalition may fail to 
form because of the members refusing to cooperate, or may 
form successfully when enough members reach a deal with 
the initiating agent.  Finally, the agent sends a confirmation 
message to all coalition members involved to announce the 
success or failure of the proposed coalition1.  If it is a suc-
cess, then all coalition members that have agreed to join 
will carry out their respective tasks at planned time steps.   
 To establish who can provide useful resources, the ini-
tiator calculates the position and the velocity of the target it 
is tracking and establishes a potential future path that the 
target will follow.  Next, the initiator finds the radar cover-
age areas that this path crosses and identifies areas where at 
least three radars can track the target (remember that track-
ing requires almost simultaneous measurement from at least 
three sensors).  The agents controlling these radars become 
members of the initial coalition.   
 Since computational resources are limited, and negotiat-
ing consumes CPU and bandwidth, the initiator does not 
start negotiation with all members of the coalition, but first 
ranks them and then initiates negotiation with the highest-
ranked ones. Ranking of the coalition members is done us-
ing a multi-criterion utility-theoretic evaluation technique. 
There are two groups of evaluation criteria, one problem-
related, and another one experience-based.  The problem-
related criteria are:  (1) the target’s projected time of arrival 
at the coverage area of a sensor: there has to be a balance 
between too short arrival times which do not allow enough 
time to negotiate and too long arrival times which do not 
allow adequate tracking; (2) the target’s projected time of 
departure from the coverage area of a sensor: the target 
needs to be in the coverage area long enough to be illumi-
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message may not arrive at the coalition members on time.  We 
implemented one mechanism and are considering another to 
improve the fault tolerance of the system.  First, a coalition 
member will hold on to a commitment (though not yet con-
firmed) until it is no longer feasible to do so—for example, 
when the duration of the task is not cost-effective.  The second 
improvement is to make persistent communication depending 
on the time between now and the start of the planned coalition.  
If the agent has more time, then it will make more attempts to 
communicate the confirmation. 

nated by the radar; (3) the number of overlapping radar 
sectors: the more sectors that overlap the higher the chance 
that three agents will agree on measurements, thus achiev-
ing target triangulation; and (4) whether the initiator’s cov-
erage overlaps the coverage area of the coalition agent: in 
this case the initiator needs to convince only two agents to 
measure (since it is the third one), which may be easier than 
convincing three. 
 We will discuss further our experience-based criteria in 
the form of distributed case-based learning and utility-
driven reinforcement learning in the following sections.  In 
summary, at the end of the evaluation all coalition members 
are ranked and the initiator activates negotiations with as 
many high-ranked agents as possible (there have to be at 
least two and the maximum is established by the negotiation 
threads available to the initiator at the time, since it may be 
responding to negotiation requests even as it is initiating 
other ones).   

Argumentative Negotiations 
Our agents use a variation of the argumentative negotiation 
model  (Jennings et al. 1998) in which it is not necessary 
for them to exchange their inference model with their nego-
tiation partners.  Note that after the initial coalition forma-
tion, the initiator knows who can help.  The goal of negotia-
tions is to find out who is willing to help. To do so, first the 
initiator contacts a coalition candidate to start a negotiating 
session.  When the responding agent (or responder) agrees 
to negotiate, it computes a persuasion threshold that indi-
cates the degree to which it needs to be convinced in order 
to free or share a resource (alternatively, one can view the 
persuasion threshold as the degree to which an agent tries to 
hold on to a resource).  Subsequently, the initiator attempts 
to convince the responder by sharing parts of its local in-
formation.  The responder, in turn, uses a set of domain-
specific rules to establish whether the information provided 
by the initiator pushes it above a resource’s persuasion 
threshold, in which case it frees the resource.  If the re-
sponder is not convinced by the evidential support provided 
by the initiator, it requests more information that is then 
provided by the initiator.  The negotiation continues based 
on the established strategy and eventually either the agents 
reach an agreement, in which case a resource or a percent-
age of a resource is freed, or the negotiation fails.  Note 
that, motivated to cooperate, the responder also counter-
offers when it realizes that the initiator has exhausted its 
arguments or when time is running out for the particular 
negotiation.  How to negotiate successfully is dictated by a 
negotiation strategy, which each agent derives using case-
based reasoning (CBR).  CBR greatly limits the time 
needed to decide on a negotiation strategy, which is neces-
sary in our real-time domain since the agent does not have 
to compute its negotiation strategy from scratch. 
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Reinforcement Learning for Coalition Forma-
tion 

Each agent keeps a profile of its neighborhood2, and current 
and past relationships with its neighbors, and the selection 
of the potential members of an initial coalition is based on 
this profile.  The current relationship is based on the nego-
tiation strains and leverage between two agents at the time 
when the coalition is about to be formed.  The past relation-
ship, however, is collected over time and enables an agent 
to adapt to form coalitions more effectively via reinforce-
ment learning.  This we will discuss in this section.  First, 
we define the past relationship between an agent ia  and a 

candidate kα .  Suppose that the number of negotiations 

initiated from an agent ia  to kα  is ( )kinegotiate a α→Σ , 
the number of successful negotiations initiated from an 

agent ia  to kα  is ( )∑ →success

negotiate kia α , the number of 

negotiation requests from kα  that ia  agrees to entertain is 

( )∑ →entertain

negotiate ik aα , the total number of all negotiations 

initiated from ia  to all its neighbors is 

( )
iainegotiate a η→Σ , and the total number of all successful 

negotiations initiated from ia  to all its neighbors is 

( )∑ →success

negotiate ai i
a η .  In our model, ( )trel kapast i

,, α  

includes the following:   
(a) the helpfulness of kα  to ia :  
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(c) the reliance of ia  on kα :  

                                                                 
2 In our multiagent system, each agent maintains a neighborhood.  

An agent knows and can communicate to all its neighbors di-
rectly.  This configuration of overlapping neighborhoods cen-
tered around each agent allows the system to scale up.  Each 
agent, for example, only needs to know about its local 
neighborhood, and does not need to have the global knowledge 
of the entire system.   In this manner, an agent can maintain its 
neighborhood with the various measures discussed in this sec-
tion. 
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 Similarly, the agent knows of how useful it has been to 
its potential coalition partner kα : 
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(f) the relative importance of ia  to kα : 

 
( )
( )∑

∑

→

→

negotiate ki

negotiate ik

a

a

α

α
, and  

(g) the reliance of kα  on ia .  

( )
( )∑

∑

→

→
success

negotiate k

success

negotiate ik

k

a

αηα

α
. 

 Note that the above attributes are based on data readily 
collected whenever the agent ia  initiates a request to its 
neighbors or whenever it receives a request from one of its 
neighbors.  The higher the value of each of the above at-
tributes, the higher the potential utility the agent ia  may 
contribute to the coalition.  The first three attributes tell the 
agent how helpful and important a particular neighbor has 
been.  The more helpful and important that neighbor is, the 
better it is to include that neighbor in the coalition.  The 
second set of attributes tells the agent the chance of having 
a successful negotiation.  The agent expects the particular 
neighbor to be grateful and more willing to agree to a re-
quest based on the agent’s friendliness, helpfulness and 
relative importance to that neighbor. To further the granu-
larity of the above attributes, one may measure them along 
different event types: for each event type, the initiating 
agent records the above six attributes.  This allows the 
agent to better analyze the utility of a neighbor based on 
what type of events that it is currently trying to form a coa-
lition for.  In that case, an event type would qualify all the 
above attributes.  
 An agent ia  can readily compute and update the first six 
attributes since they are based on the agent’s encounter with 
its neighbors.  However, an agent is not able to compute the 
last attribute, the reliance of kα  on ia , since the denomi-
nator is based on kα ’s negotiation statistics.  This attribute 
is updated only when agent ia  receives arguments from 
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kα .  Thus, an agent updates the attributes from two 
sources.  First, the update is triggered by the negotiation 
outcome directly.  Second, the update comes from the in-
formation pieces contained in the arguments (when the ini-
tiator reminds the responder of the responder’s reliance on 
the initiator).  With the argumentative negotiation between 
agents, and the ability of an agent to conduct multiple, con-
current, coordinated 1-to-1 negotiations, the above profiled 
attributes facilitate a convergence of useful coalitions, al-
lowing multiagent system as a whole to learn to collaborate 
more efficiently. 

From Learning to Selecting Better Coalition 
Members 
An agent evaluates its coalition candidates and ranks them 
based on their potential utility value.  The potential utility, 

ik aPU ,α , of a candidate kα  is a weighted sum of the past 

relationship, i.e., ( )trel kapast i
,, α , the current relationship, 

i.e., ( )trel kanow i
,, α , and the ability of the candidate to 

help with the task je , i.e., ( )teability jkai
,,α .  The ability 

value is domain-dependent and predefined (e.g. an IR sen-
sor is better suited for night detection than an optical one).  
The current relationship between an agent ia  and its 

neighbor kα is defined as follows:  Suppose the number of 

concurrent negotiations that an agent can conduct is availN , 

and the number of tasks that the agent ia  is currently exe-

cuting as requested by kα  is 

( )( )∑ =
execute ak i

taskinitiatortask ,: η .  Suppose 
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The first attribute is inversely proportional to 
( )trel kanow i

,, α  and the other two are proportional to 

( )trel kanow i
,, α .  The first attribute approximates how de-

manding the agent is of a particular neighbor.  The more 
negotiations an agent is initiating to a neighbor, the more 
demanding the agent is and this strains the relationship be-
tween the two and the negotiations suffer.  The last two 
attributes are used as a leverage that the agent can use 
against a neighbor that it is negotiating with, about a re-
quest initiated by the neighbor.    
The potential utility is then: 
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mately these weights may be dynamically dependent on the 
current status of ia  and the task je .   And 

( )trel kapast i
,, α  is a weighted sum of the seven attributes 

previously discussed.  As a result, an agent is reinforced to 
go back to the same neighbor (for a particular task) that it 
has had good past relationship in their interactions.  In this 
manner, our agents are able to form more effective coali-
tions via reinforcement learning of which neighbors are 
useful for which tasks.    

From Learning to Arguing More Effectively 
As we mentioned earlier, when an initiating agent argues, it 
sends over different information classes.  One of them is the 
world class which includes a profile of the neighbors.  This 
information includes the past relationship attributes.  Upon 
receiving these arguments, the responding agent evaluates 
the evidence support that they bring forth.  Here we show 
an actual CLIPS rule that our agents use: 
(defrule world-help-rate 
 (world (_helpRate ?y&:(> ?y 0.6667))) 
=> 
 (bind ?*evidenceSupport* (+ (* 0.05 ?y)  
  ?*evidenceSupport*)) 

 This rule says if the attribute helpfulness is greater than 
0.6667, then add 5 percent of that rate to the evidence sup-
port.  This means that the responding agent is reinforced to 
agree to a negotiation by its previous interactions with the 
initiating agent.  And the more successes the initiating agent 
has with a particular neighbor, the more effectively it can 
argue with that neighbor due to its reinforcement learning.  
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As a result, both agents learn to conduct better negotiations.  
Note also that this collaborative learning via inter-agent 
negotiations allow both agents to improve their perform-
ance because both agents are motivated to cooperate to 
achieve global goals.  

Case-Based Learning for Better Negotiations 
Before a negotiation can take place, an agent has to define 
its negotiation strategy, which it learns from the retrieved, 
most similar old case.  Note that a better negotiation does 
not mean one that always results in a deal.  A better nego-
tiation is one that is effective and efficient, meaning that a 
quick successful negotiation is always preferred, but if a 
negotiation is going to fail, then a quickly failed negotiation 
is also preferred.   
 A negotiation process is situated.  That is, for the same 
task, because of the differences in the world scenarios, con-
straints, evaluation criteria, information certainty and com-
pleteness, and agent status, an agent may adopt a different 
negotiation strategy.  A strategy establishes the types of 
information to be transmitted, the number of communica-
tion acts, the computing resources needed, and so on.  To 
represent each situation, we use cases.  Each agent main-
tains two case bases, one for the agent as an initiator, the 
other for the agent as a responder. In general, an initiator is 
more conceding and agreeable and a responder is more 
demanding and unyielding.  Each agent learns from its own 
experiences and thus evolves its own case bases.    
 In our work a case contains the following information: a 
situation space, a solution space, and an outcome.  The 
situation space documents the information about the world, 
the agent, and the neighbors when the task arises.  The solu-
tion space is the negotiation strategy that determines how 
an agent should behave in its upcoming negotiation.  In an 
initiator case, the situation features are the list of current 
tasks, what the potential negotiation partners are, the task 
description, and the target speed and location.  The negotia-
tion parameters are the classes and descriptions of the in-
formation to transfer, the time constraints, the number of 
negotiation steps planned, the CPU resource usage, the 
number of steps possible, the CPU resources needed, and 
the number of agents that can be contacted.  In a responder 
case, the situation feature set consists of the list of current 
tasks, the ID of the initiating agent, the task description, the 
power and data quality of its sensor, its CPU resources 
available, and the status of its sensing sector.  The negotia-
tion parameters to be determined are the time allocated, the 
number of negotiation steps planned, the CPU usage, the 
power usage, a persuasion threshold for turning a sensing 
sector on (performing frequency or amplitude measure-
ments), giving up CPU resources, or sharing communica-
tion channels. Finally, in both cases the outcome records 
the result of the negotiation.   
 When a task is formulated, an agent composes a new 
problem case with a situation space.  Then it retrieves the 
most similar case from the case base by a weighted, para-
metric matching on the situation spaces.  Given the most 

similar case, the agent adapts that solution or negotiation 
strategy to more closely reflect the current situation.  
Equipped with this modified negotiation strategy, the agent 
proceeds with its negotiation.  Finally, when the negotiation 
completes, the agent updates the case with the outcome.   

Incremental and Refinement Learning 
After a negotiation is completed (successfully or other-
wise), the agent updates its case base using an incremental 
and a refinement learning step. 
 During incremental learning the agent matches the new 
case to all cases in the case base and if it is significantly 
different from all other stored cases, then it stores the new 
case.  When the agent computes the difference between a 
pair of cases, it emphasizes more the case description than 
the negotiation parameters since its objective is to learn a 
wide coverage of the problem domain.  This will improve 
its future case retrieval and case adaptation.  So, an agent 
learns good, unique cases incrementally.  The difference 
measure is: 
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where i
ksitf ,  is the ith situation feature for case k, and j

ksolf ,  

is the jth solution feature for case k, isitw ,  is the weight for  
i

ksolf , , and jsolw ,  is the weight for j
ksolf , , sitw  is the 

weight for the situation space, and solw  is the weight for 

the solution space.  Also, sitw  + solw  = 1, and each isitw ,  

or jsolw ,  is between 0 and 1.  Finally, the agent computes 

( )baDiff
toKb

,min
1=

 for the new case a, and if this number is 

greater than a pre-determined threshold, then the case is 
learned. 
 Second, since we want to keep the size of the case base 
under control, especially for speed of retrieval and mainte-
nance (since our problem domain deals with real-time target 
tracking), the agent also performs refinement learning.  If 
the new case is found to be very similar to one of the exist-
ing cases, then it computes (1) the sum of differences 
(e.g., ( )∑

= toKb
baDiff

1

, ) between that old case and the entire 

case base minus the old case; and (2) the sum of differences 
between the new case and the entire case base minus the old 
case.  This establishes the utility of the new case and the old 
case (that the agent considers to replace with the new case).  
The agent chooses to keep the case that will increase the 



AAAI Spring Symposium on Collaborative Learning Agents, 2002 

diversity of the case base.  Thus, if the second sum is 
greater than the first sum, then the agent replaces the old 
case with the new one.  In this manner, we are able to 
gradually refine the cases in the case base while keeping the 
size of the case base under control. 

Results 
We have built a fully-integrated multiagent system with 
agents performing end-to-end behavior.  In our simulation, 
we have any number autonomous agents and Tracker mod-
ules.  A Tracker module is tasked to accept target meas-
urements from the agents and predict the location of the 
target.  The agents track targets, and negotiate with each 
other.  We have tested our agents in a simulated environ-
ment and with actual hardware of up to eight sensors and 
two targets.  For the following experiments, we used four 
sensors and one target moving about 60 feet between two 
points. 
 We ran two basic experiments: In the first one we inves-
tigated the effect of reinforcement learning in the quality of 
the resulting coalition, and in the second one we looked 
into the quality of the negotiation as a function of learning 
new cases of negotiation strategies.  The quality was based 
in the number of successful negotiations, since when the 
agents reach a negotiated deal to jointly track a target, the 
overall system utility increases.  Initial results indicate that 
the agents form coalitions with partners who are more will-
ing to accommodate them in negotiation, and that the cases 
learned are being used in future negotiations.  Agents that 
use learning of negotiation cases have between 40% and 
20% fewer failed negotiations.  Agents that use reinforce-
ment learning to determine future coalition partners tend to 
prefer neighbors who are more conceding. 
 We also conducted experiments with four versions of 
learning: (1) both case-based learning and reinforcement 
learning (CBLRL), (2) only reinforcement learning 
(NoCBL), (3) only case-based learning (NoRL), and (4) no 
learning at all (NoCBLRL).  Figure 1 shows the result in 
terms of the success rates for negotiations and coalition 
formations.  As can be observed from the graph, the agent 
design with both case-based learning and reinforcement 
learning outperformed others in both its negotiation success 
rate and coalition formation success rate.  That means with 
learning, the agents were able to negotiate more effectively 
(and perhaps more efficiently as well) that led to more coa-
litions formed.  Without either case-based learning or rein-
forcement learning (but not both), the negotiation success 
rates remained about the same but the coalition formation 
rate tended to deteriorate.  This indicates that without one 
of the learning mechanisms, the agents were still able to 
negotiate effectively, but may be not efficiently (resulting in 
less processing time for the initiating agent to post-process 
an agreement).  Without both learning mechanisms, there 
was significant drop in the negotiation success rate.  This 
indicates that the learning mechanisms did help improve  
 

Figure 1  Success rates of negotiations and coalition forma-
tions for different learning mechanisms. 

 
 Note that the entire agent system is complicated with the 
end-to-end-behavior affected by various threads and envi-
ronments.  The results reported here need to be scrutinized 
further to isolate learning, monitoring, detection, reasoning,  
communication, and execution components in the evalua-
tion: An agent busy tracking will not entertain a negotiation 
request that requires it to give up the resources that it is 
using to track.  That refusal leads to a failure on the initia-
tor’s side.  Another point worth mentioning is the real-time 
nature of our system and experiments.  Added learning 
steps may cause an agent to lose valuable processing time 
to handle a coalition formation problem.  More frequent 
coalition formations may flat out prevent other negotiations 
to proceed as more agents will be tied up in their scheduled 
tasks, part of the commitments to the coalitions. 
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Future Research Issues 
There are other learning issues that we plan investigate.  Of 
immediate concerns to us are the following 
(1) We plan to investigate the learned cases and the overall 

‘health’ of the case bases.  We plan to measure the di-
versity growth of each case base (initiating and re-
sponding) for each agent.  We also plan to examine the 
relationships between an agent’s behavior (such as 
number of tracking tasks, the number of negotiation 
tasks, the CPU resources allocated, etc.) with the 
agent’s learning rate.  For example, if an agent is al-
ways busy, does it learn more or less, or learn faster or 
more slowly?   

(2) We plan to investigate the learning of “good-enough, 
soon-enough” solutions.  Under time constraints, 
agents cannot afford to perform complicated learning.  
Should the agent learn hastily sub-optimal solutions to 
its coalition formation and negotiation ventures? Or 
should it keep track of its coalition formation success 
rates and its negotiation success rates?  For example, if 
one of the rates drops below an acceptable level, 
should an agent ask for help from more successful 
agents and perhaps learn their cases?  If so, then we 
may have to incorporate time issues in this behavior to 
trade-off between the loss of the target tracking time, 
and the gain of higher coalition formation rates. 

(3) We plan to investigate further the effects of reinforce-
ment learning on the agents’ coalition formation capa-
bilities.  Will each agent learn to approach a static coa-
lition formation for each particular task?  That is, will 
the reinforcement learning inhibit an agent to look to 
some other neighbors for help instead of the same old 
group of neighbors?  If so, this could be harmful to the 
system? 

(4) We plan to investigate cooperative and distributed 
case-based learning (Martin and Plaza 1998; Martin et 
al. 1998; Plaza et al. 1997).  However, instead of 
evaluating the worth of such learning in terms of tasks 
getting executed, we want to concentrate on coalitions 
getting formed.  We believe that combining case-based 
learning with negotiations allows the agents to ex-
change experiences selectively—a negotiation occurs 
only when necessary.  This facilitates a more conserva-
tive but potentially more powerful learning behavior as 
the learning is reinforced through subsequent agent 
processes.   

Conclusions 
We have described the combination of reinforcement and 
case-based learning in negotiating multiagent systems.  
Each agent keeps a profile of its interactions with its 
neighbors and keeps a log on their relationships.  This al-
lows an agent to compute a potential utility of each coali-
tion candidate and only approach those with high utility 
values to increase the chance of a successful coalition for-
mation.  This is a form of reinforcement learning as agents 

are able to learn to go back to the same agents that have 
cooperated before and to argue more effectively.   The ap-
proach of negotiation-based coalition facilitates collabora-
tive learning efforts among the agents as the negotiation 
outcomes influence each agent’s perception of its 
neighbors, which, in turn, plays an important role in form-
ing better coalitions faster.  This learning is derived from 
the outcome of the negotiations and also from the informa-
tion exchanged during a negotiation.  Each agent also uses 
case-based reasoning to derive a negotiation strategy.  
When a negotiation completes, the resultant new case is 
learned if it increases the diversity of the case base.  The 
integration of these learning mechanisms leads to more 
effective negotiations and deals between agents.  Initial 
results support this avenue of research and show that learn-
ing agents perform better and more successful negotiations. 
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