
ACE General Service Daemon Data Thread,
Command Semantics

and Client Command Design

Leon Searl and Gary Minden

ITTC-FY2001-TR-23150-03

January 2001

Copyright © 2001:
The University of Kansas Center for Research, Inc.,
2335 Irving Hill Road, Lawrence, KS 66044-7612.
All rights reserved.

Project Sponsor:
U.S. Air Force and the Defense Advanced Research

Projects Agency under contract no. F30602-00-2-0581
and The National Science Foundation

under grant EIA-9972843

Technical Report

The University of Kansas

Copyright Notice

Copyright (c) 2001 The Information and Telecommunication Technology Center
(ITTC) at the University of Kansas

ALL RIGHTS RESERVED

1 INTRODUCTION..2

1.1 NOTATION..2

2 DESIGN ..3

2.1 OVERVIEW ...3
2.1.1 Class Diagram...6

2.2 COMMAND SEMANTICS ..7
2.2.1 ACEXXXSemanticsConstructor Class ...8

2.2.1.1 Constructor Method .. 8
2.2.1.2 fillCommands Method .. 9
2.2.1.3 mkAAACmdSemantics Methods .. 10

2.3 SERVICE DAEMON DATA THREAD ...10
2.3.1 ACEXXXDataThread Daemon object class...11

2.3.1.1 Constructor.. 12
2.3.1.2 Run method... 12
2.3.1.3 General Command Method Design ... 13
2.3.1.4 Service Required Methods .. 14
2.3.1.5 Device Required Methods.. 14
2.3.1.6 Other ACE Service Subclass Required Methods... 14

2.3.2 C Library Java Wrapper..15
2.4 CLIENT...15

2.4.1 ACEXXX Client Command object class...15
2.4.1.1 Constructor Member Function .. 15
2.4.1.2 GetXXX Command Member Functions.. 16
2.4.1.3 SetXXX Command Member Functions .. 17

2.4.2 ACEXXX Client Notification object class ..17

3 GLOSSARY..18

4 CHANGE LOG ..18

5 NOTES..18

Figure 1 ACE Client and ACE Service Daemon Data Thread Design Components...................... 4

 2

1 Introduction
This document provides a 'general' design that can be applied to the two portions of an ACE
Service Daemon that are unique to each daemon. The two components consist of the Data
Thread and Command Semantics. Each daemon consists of an infrastructure that is common to
all ACE Service daemons. The Data Thread component and Command Semantics 'implement'
the behavior that is unique to each daemon. The Data Thread may use a low-level library to carry
out some of its required behavior (example: Some daemons that communicate to devices through
a serial port may use the ACE Serial library).

Also found in this design document is a design for a Java based ACE Client Command interface
to send commands to ACE Daemons from an ACE Client.

Many of the requirements in the 'ACE Service Daemon Requirements' are addressed in this
design document.

This document is derived from the 'ACE Service Daemon Design Document'. Since this
document concerns a portion of the ACE Service Daemon, the portion unique to each daemon, it
must interface with the remainder of the ACE Service Daemon, the portion common to all ACE
daemons. The intra-daemon interface methods are found in the 'ACE Service Daemon Interface
Specification'. The ACE Daemon infrastructure invokes data thread methods to execute client
commands. 'ACECmdLine' classes, provided by the ACE Daemon infrastructure, are examined by
data thread command methods and are created by these same methods as return values. The
interface specification for manipulating command line classes is in the 'ACE Service Command
Object Interface Specification' document. The same document also specifies the interface to the
'ACECmdSemantics' command semantics objects used in the daemon semantics constructor class.

The Design section describes the general design that all ACE Service Daemons follow. This
general design is used to derive the specific ACE Service Daemon design documents. The
Glossary section contains definitions for terms used in this document. The author, date and
reasons for changing this document are found in the Change Log section. Any information that
does not fit into any of the other sections can be found in the Notes section.

1.1 Notation

Document names appear in 'italic'.

Source code identifiers appear in 'courier'.

Class diagrams use the UML Class Diagram syntax.

 3

2 Design
This design document primarily addresses the design of the Command Semantics and Data
Thread components of the Thread ACE Service Daemon. It also includes design information for
a Java version of a Client Command interface for sending commands to an ACE Service
Daemon.

The Overview subsection describes where the Data Thread, Command Semantics and Client
Command interface designs are integrated into the ACE Service Daemon design. The Command
Semantics subsection describes the design of the Command Semantics Constructor class. Data
Thread design is covered in the Data Thread subsection. A design for a Java based Client
Command interface is in the Client Command Interface section.

2.1 Overview

This design concerns those components of ACE Service Daemons and ACE Clients that are
unique to each client and daemon. These components include ACE Service Client object, ACE
Service Daemon Data Thread and ACE Command Semantics. Each of these design topics is
cover in its own subsection.

 4

Figure 1 ACE Client and ACE Service Daemon Data Thread Design Components

Figure 1 shows the components described in this design plus the components that these design
components interface to. There are two groupings of components in the diagram 1) ACE Client
and 2) ACE Service Daemon. The components described in this design document are in green.
Network sockets are shown in yellow. Components from the problem domain (outside of the
scope of this design document) are shown in blue.

It is assumed by this document that an ACE Service Client has established a network connection
to the ACE Service Daemon. See XXX for a description of the connection establishment
mechanism.

Client Command Interface: On the client side, establishment of the connection has created a
'client command interface' object instance that is a command interface to the ACE Service
Daemon. The Client Command Interface provides to mechanism of communications between the

ACE Client

ACE Service Daemon

Data Producer

Data Consumer

Client Cmd Intf

Cmd Thread

Cmd Semantics

Cmd Semantics

Client Specific SW

Data Thread

Control Thread

Operation
Network
Cmds

Notification
Network
Cmds

Cmd Table
Method Calls

ACECmdLine
Object

ACECmdSemantic
Objects

ACECmdSemantic
Objects

Hardware

Network Socket

Design Component

Problem Domain
Component

Data

Database
Data SQLOS/Lib Calls

ConnIntf

 5

client and daemon:

• Client to Daemon operation commands and Daemon to Client operation results

• Daemon to Client notification commands and Client to Daemon notification results.

The Client Command Interface uses the Command Semantics object to convert from client
function/method calls at the interface into the Operation Network Commands. Results from the
Operation Network Commands are converted into function/method return values utilizing the
same Command Semantics object.

For Notification Network Commands received from the daemon the Client Command Interface
uses the Command Semantics objects to convert the network command arguments into
method/function arguments that are given to client methods/functions. The return values from
the client methods/functions are converted to network command results and sent back to the
daemon.

Operation Network Commands and Notification Network Commands may occur
asynchronously.

ACE Service Daemon Data Thread: Is a component of an ACE Service Daemon. The Data
Thread implements the unique behavior of each type of daemon. Each daemon also has a
Command Semantics object that sets up the command semantics supported by the particular type
of daemon. The remainder of the ACE Service Daemon is infrastructure that is common to all
ACE Daemons.

Figure 1 only shows those portions of the ACE Service Daemon infrastructure that interact
directly with the daemon elements designs in this document.

The Command Semantics object information is used by a Command Thread to parse incoming
Operations Commands to check for semantics errors. Commands that are semantically correct
are passed to the Control Thread. The Control Thread performs a command table lookup and
calls the appropriate Data Thread object method with arguments from the network command to
execute the command.

The Data Thread object methods invoked by the Control Thread execute commands and return
the command results to the Control Thread. Command result semantics are obtained by the Data
Thread from the Command Semantics Object and are used to construct the result returned to the
Control Thread.

Data Thread object command methods may control hardware connected to the daemon's host
through serial communications or operating system calls.

Some daemons provide information storage and/or query services. These typically utilize an
SQL database.

 6

If the Data Thread has data stream inputs and/or outputs the Data Thread 'run' method
continuously processes data to/from its data stream(s) in its own thread. The 'run' method uses
the Connection Interface to send/receive data on data stream sockets. Hardware connected to the
daemon’s host may be a source or sink for data streams.

2.1.1 Class Diagram

Figure 2 shows the ACE Service Daemon Data Thread class diagram. The diagram illustrates the
relationships between the DataThread class and classes it interfaces with in the daemon.

The class diagram is referenced in other parts of this design document.

 7

ACECmdTable

addSemantics()

ACECmdSemantics
*

ACECmdArgSemantics
*

ACEServiceSemanticsConstructor

fillCommands(ACECmdTable)

ACEYYYSemanticsConstructor

fillCommands(ACECmdTable)

ACEXXXSemanticsConstructor

fillCommands(ACECmdTable)

ACEServiceDataThread

ACEYYYDataThread

ACEXXXDataThread

addMethod(ACECmdTable,
<cmdname>, Method)

ACEDaemonInterface

getACECmdTable() ; ACECmdTable

1

putCommand()

1

Figure 2 Data Thread Class Diagram

2.2 Command Semantics

A Command Semantics object sets up the network command semantics in a command table. The
daemon uses the command semantics to parse incoming operations commands and notification

 8

results and to construct out going operations results and notification commands. A client may
also use the Command Semantics object to set up a command table for the same commands since
a client and a daemon that communicate both use the same command semantics.

Language: The design for the Command Semantics is for the Java programming language.

As shown in figure 2, for each hierarchy level of the Data Thread object in a daemon there is a
corresponding Command Semantic object level. All Command Semantics objects are derived
from the 'ACEServiceSemanticsConstructor' Java class. Each Command Semantic level adds
the command semantics to the command table that are common to all services that inherit the
level. There is an Interface Specification Document for each level describing the command
semantics for the level. See the ACE Service Interface Specification document for the command
semantics that are common to all ACE Service Daemons.

Example:

• ACEServiceSemanticsConstructor –adds commands common to all ACE services (
shutdown, reset, etc).

• ACEDeviceSemanticsConstructor – adds commands common to all devices (setPower, etc).

• ACEPTZCameraSemanticsConstructor – adds commands common to all Pan/Tilt/Zoom
cameras (setPosition, zoom, etc).

• ACEVCCEPTZCameraSemanticsConstructor – adds commands that only the Cannon VCC3
has.

2.2.1 ACEXXXSemanticsConstructor Class

The ACEXXXSemanticsConstructor class where XXX is replace by the name of the ‘level’ of
the service (Examples, ‘Service’, ‘Database’, ‘Device’, ‘PTZCamera’, ‘Projector’, ‘Security’,
‘UserID’, ‘iButton’). The semantics constructor is responsible for filling a command table will
all of the command semantics that are use at the ‘XXX’ service level of the damon/client.

The following is an example Java Command Semantics class declaration:

public class ACEXXXSemanticsConstructor extends ACEYYYSemanticsConstructor {
 public static void
 fillCommands(ACECmdTable cmdTable);
 private static ACECmdSemantics
 mkAAACmdSemantics(); // Example of a method to create a ACECmdSemantics
}

Each ACEXXXSemanticsConstructor extends a higher level ACEYYYSemanticsConstructor.
The highest level is the ACEServiceSemanticsConstructor.

2.2.1.1 Constructor Method

There is no constructor for this class. This class is never meant to be instantiated. All methods of

 9

this class are thus static methods.

The Command Semantics classes were not merged into the Data Thread classes so that an ACE
Client could use the same Command Semantics class to fill in its command table. Since a
command sender and a command receiver both require knowledge of the command semantics
both have to have the same semantics information. If there are any changes to the Command
Semantics in the future then only one class has to be changed (the Command Semantics class)
instead of two or more classes (a class in the client and a class in the daemon).

2.2.1.2 fillCommands Method

This method is called by the corresponding ACEXXXDataThread class hierarchy level in the
ACEXXXDataThread constructor method.

class ACEXXXSemanticsConstructor
public static void
 fillCommands(ACECmdTable cmdTable);

Notice that his is a static method so that no instance of the ACEXXXSemanticsConstructore is
required.

This method is responsible for filling the ACECmdTable argument with the ACECmdSemantics
class instances that represent the command semantics for the ACEXXXDataThread level of the
ACE Service hierarchy.

Design:

• For each network command supported by the 'current' service XXX hierarchy level
(including operations commands, operations results commands, notification commands and
notification results commands):

• Call a private method mkAAACmdSemantics that returns an ACECmdSemantics class
instance. See the mkAAACmdSemantics subsection for more information.

• Use the inherited method ACEServiceSemanticsConstrutor.addSemantics(…) to add the
ACECmdSemantics to the ACECmdTable.

Example: The ACE Projector service hierarchy level supports 4 commands:

1. GetVideoInputSource

2. GetVideoInputSourceResult

3. SetVideoInputSource

4. SetVideoInputSourceResult

The ACEProjectorSemanticsConstructor class fillCommand() adds ACECmdSemantics
instances to the ACECmdTable argument for each command of these 4 commands.

 10

2.2.1.3 mkAAACmdSemantics Methods

 There is a method for each network command supported a service hierarchy level where 'AAA'
is replace by some reasonable name representing the network command name.
mkGetVidInSrcCmdSemantics is a good method name for the 'GetVideoInputSource' network
command.

A Network Command is an ASCII representation of a command. It is used to transmit commands
over network sockets between ACE Clients and ACE Service Daemons. The handling of
Network Commands are not a concern of this document since they are handled by the ACE
Service Daemon infrastructure. The Client Command Interface has a closer interface with the
Network Commands and more information can be found in the Client Command Interface
section of this document.

Network Commands specifications, found in ACE Service Daemon Interface Specification
documents, are used in this design to create specific ACECmdSemantic class instances by each
ACE Service Daemon's Command Semantics Constructor class. The Network Command
specification defines command name, arguments (name, type, extent and dependencies on other
arguments). These are needed by the mkAAACmdSemantics methods to create the
ACECmdSemantic instances.

private static ACECmdSemantics
 mkAAACmdSemantics(); // Example of a method to create a ACECmdSemantics

Note that these are private methods. There must be NO access to these methods outside the class.

Design:

The following is a general sequence of events to follow in coding these methods:

• For each command argument create a new instance of an ACECmdArgSemantics class using
the 'new' operator. See XXX for the API to the constructor. Use the appropriate interface
specifications document to find the network command information to setup the type, extent,
dependencies, etc. arguments to the construtor.

• Don't add the 'status', 'cmdErrorNo', or 'msg' arguments. They are handled later.

• Assemble the argument semantics class instances into a vector for the next step.

• Use the 'new' operator to create a new instance of the ACECmdSemantics class.

• Call the 'addCommonResultCmdArgSemantics()' method to add the 'status', 'cmdErrorNo',
and 'msg' arguments to the semantics instance.

2.3 Service Daemon Data Thread

This subsection describes the design for the ACE Service Daemon Data Thread object. The Data
Thread object is one of several threads that constitute an ACE Service Daemon but it and the

 11

Command Semantics are the only objects that are different for each daemon. The Data Thread is
responsible for implementing the specific behavior of each ACE Service Daemon. It executes the
commands received from a client and may generate notifications sent to a client.

The Data Thread object is composed of an inherited hierarchy of Data Thread objects that
follows a path through the ACE Command Object Hierarchy. See Figure 2 'Class Diagram' to
view the class hierarchy mechanism and where it fits into the daemon infrastructure.

There is only one data thread instance per daemon.

Language: This design subsection assumes an object oriented language is used to implement the
design (example: Java, Lisp, C++). In particular the Java language is addressed.

There are two threads of execution that use the Data Thread class. One is the Control thread and
the other is the Data thread. Note that there is a distinction between the Data Thread class and the
Data thread (big 'T' class and little 't' thread). This distinction exists because Data Thread class
methods are executed by the daemon’s Control thread.

2.3.1 ACEXXXDataThread class

This class is has two responsibilities:

• Implement the command methods that the Control thread executes for each command

• Implement the 'run' method for the Data thread.

public [abstract] class ACEXXXDataThread extends ACEYYYDataThread {
 public ACEXXXDataThread (…);
 public void run(…); // only for leaf class
 public XXXCmd(…); // only for leaf class
}

By convention the name of the data thread class always ends in ‘DataThread’.

The class is declared 'abstract' if it is not a leaf class. A leaf class is a class that is not
extended by any other class. By declaring the class 'abstract' there will be no instances of the
class. Only leaf classes of the Data Thread are instantiated.

The most 'super' class for ACE Data Thread classes is the 'ACESerivceDataThread'. This
abstract class must be inherited by all Data Thread classes either through direct or indirect
inheritance.

The command methods are methods of the Data Thread class that are associated with specific
Network Commands. When a Network Command is received by the daemon the Control Thread
in the daemon performs a table lookup on the command to determine which Data Thread method
to invoke. It calls the method with an ACECmdLine class instance that represents the contents of
the Network Command. Note: command methods are associated with command semantics in the
constructor of the Data Thread class.

 12

The ‘run’ method of the Data Thread class performs the tasks of the Data thread. It performs any
service initialization and data stream processing service if required.

2.3.1.1 Constructor method

The constructor method of a Data Thread class performs class specific initialization. It does not
do initialization of hardware, databases, etc. Initialization of the hardware, databases, etc. is left
to the ‘run()’ method of the class.

public ACEXXXDataThread (java.lang.ThreadGroup threadGroup,
 java.lang.String threadName,
 ACEDaemonInterface mainThread)

Design:

• Call the super() method on the 3 arguments passed into the constructor.

• Get the 'ACECmdTable' created by using the daemon infrastructure method
'ACEDaemonInterface.getACECmdTable()'.

• Fill the ACECmdTable for the class's level of the service using the
'ACEXXXSemantics.fillCommands' method where XXX is the semantics level that
corresponds to the Data Thread class's level. Not that each super class constructor calls it’s
own fillCommands method.

• For each command implemented by this class, use the inherited 'addMethod' method to
associate a command with the method to invoke to execute the command. Note: Use the
inherited 'getMethod' method to obtain a method reference using the method's name. There
does not have to be a one-to-one correspondence between the Network Commands and the
Data Thread method implementing the command. A single Data Thread method is allowed to
implement more than one command.

• Abort the program if there is a problem finding an expected command or method since it is a
coding error and not recoverable.

2.3.1.2 Run method

This method, implemented only by leaf Data Thread classes, carries out initialization not
performed by the constructor method. For those daemons that perform data stream processing
this method also handles that function.

Any initialization required by the Data Thread commands must be performed in the run()
method. This might include opening a serial port to a device controlled by the daemon over a
serial interface.

There are a number of Service Daemons in ACE that generate, consume, or transform streams of
data. The data streams in the ACE environment include, but are not limited to, video and audio.
Data streams are communicated between ACE daemons and clients through network sockets.

 13

Processing of these streams is generally CPU intensive. Since ACE Service Daemons are
implemented in Java, and C is much more efficient than Java for processing high data rate data
streams, the run() method should use the JNI to call a native C function to processes data
streams. The C function continually loops gathering data, from a socket or local device,
processing the data and sending the data, to a socket or local device. On a regular basis the
function must check a memory location to determine if a command executed by the Control
Thread has changed the value in the memory location to signify that the function must change its
state/behavior.

public void run();

Design:

Information needed to perform the initialization is obtained from the Control Thread.

• Get the control thread using the inherited 'getControlThread()' method.

• Get configuration data from the control thread using its
'ACEControlThreadInterface.getConfig()' method. Example: The string ‘port’ as an argument
returns the name of the serial device to initialize.

• Perform any initialization required before any commands are processed. Example: initialize a
hardware device to a known state, initialize a serial port for control of a hardware device.

• If implementing a data stream daemon enter an endless loop.

• Wait for the command to process the stream. This usually involves using the Java wait()
method. A command executed by the Control thread calls notify() to wake up the Data
thread.

• Process the stream until a ‘stop’ command is issued. The ‘stop’ method should wait until
the run method has finished stream processing. This prevents additional commands from
coming in while the ‘run’ method is between states.

• Return to the top of the loop.

2.3.1.3 General Command Method Design

This subsection describes in general what command execution method designs should be like.
This includes both 'set' and 'get' command methods.

These methods are normally only implemented in leaf classes. Any methods that are declared in
non leaf classes must be 'abstract' unless the implementation is known to be common for all
subclasses, then the method may be implemented in an intermediate class. There are a number of
command methods that are implemented at the ACEServiceDataThread class.

Arguments:

 14

ACECmdLine - the command line received from the client.

Design:

• Get the semantics object for the result command using the 'getSemantics' method.

• Create a new result command line using the 'ACECmdLine' constructor.

• Obtain any required argument information from the ACECmdLine argument.

• Perform the processing for the specific command. If there is an underlying C API then call
the Java wrapper method(s).

• Fill in the ACECmdLine with return values if any using the ACECmdLine.addArg method.

• For a 'Set' command always add the 'status' argument. To give the client good
information about why a command failed the 'errorNo' and 'msg' arguments should be
added also. Add as much useful information as possible to the 'msg' argument.

• Any error that occurs while adding an argument to the command line must abort the
program. An error here is a coding error and thus fatal.

• Return the ACECmdLine.

2.3.1.4 Service Required Methods

These abstract methods must be implemented by every ACE Service Daemon data thread leaf
class. See the ACE Service Interface Specification for more information on these methods.

• Reset - Reset the state of the daemon to an initialized state.

2.3.1.5 Device Required Methods

These abstract methods must be implemented by every ACE device service daemon thread leaf
class. See the ACE Device Interface Specification for more information on these methods.

• DeviceReset

• GetPowerState

• SetPoweState

2.3.1.6 Other ACE Service Subclass Required Methods

The class must also implement other methods that are inherited from ACE Service decendent
classes. Example: The 'Epson3750DataThread' class must implement 'ProjectorDataThread' class
abstract methods.

 15

2.3.2 Java C Library Wrapper

If the data thread requires the use of a C library a Java wrapper is required to use the C library.
By convention a separate class is created specifically for the wrapper. The name of the wrapper
describes the C library and ends in ‘JNI’. There is no requirement to have a one-to-one match
between the JNI methods and the C library entry functions. The JNI methods may perform extra
processing (example: argument unit conversions).

2.4 Client Command Interface

To aid ACE Clients in communicating with ACE Daemons a hierarchy of command interface
classes are designed. The interface class has methods that the clients may execute to send
commands to an ACE Daemon. The client creates an instance of a command interfaces class for
each daemon instance it wishes to command. Note that the command interface to the ASD aids
in creating instances of command interface classes.

Language: All current command interface classes are implemented in the Java programming
language.

The command interface class handles converting Java method arguments into ACE network
command arguments and sending the commands to the daemon. It also converts the daemon
command result into a return value or throws a Java exception.

2.4.1 ACEXXX Client Command Interface class

The command interfaces classes follow the same class hierarchy as the daemon Data Thread and
Semantics Constructor classes. The most ‘super’ command interface class is the ACEService
class.

By convention the name of the command interface class is the same as the data thread class but
with the ‘DataThread’ omitted.

Public [abstract] ACEXXX extends ACEYYY {
 ACEXXX(String serviceAddress);
}

2.4.1.1 Constructor Member Function

This is the constructor method for the XXX Service.

Argument:

ACEAddress - This is an object (String) that contains address information about the specific
service daemon to connect to.

The constructor function does the following:

• Call the super class constructor with the ACEAddress argument..

 16

• Get the 'ACECmdTable' using the inherited member function 'getCommandTable'.

• Call the 'fillCommands' member function of the 'ACEXXXSemantics' class.

2.4.1.2 GetXXX Command Member Functions

Implement a 'Get' member function for each command at this object's ACE Service Hierarchy
level that queries information from an ACE Service Daemon. Note that this is different than in
the Data Thread where most command methods are declared at their appropriate class hierarchy
level and only implemented at the leaf class level.

Example: The ACE Service Daemon ‘getPowerState’ command is implemented at the
ACEDevice command interface level.

Note that it is not required to have a one-to-one correspondence between network commands and
query methods. It may be reasonable to have several query methods that use the same network
command. It is also reasonable to have a single query use more than one network command.

By convention all query methods begin with the letters ‘get’.

Design:

The member function performs the following:

• Get the command's semantics object from the object using the inherited
'getACECmdSemantics' method.

• If the semantics is not found print out a meaningful debug message and abort the program.
We have found a programming error.

• Use the 'ACECmdLine' object constructor with the above semantics as an argument to create
a command line object.

• For each query argument do the following:

• Use the 'addArg' method of the 'ACECmdLine' object to add the argument and its value
to the command.

• If there is an error trying to add the argument to the command line then print out a
meaningful debug message to standard error and abort the program. We have found a
programming error.

• Use the ACEService.sendMessage' method with the 'ACECmdLine' object as and argument
to send the command to the daemon.

• From the returned ACECmdLine command line get each response argument value using the
'ACECmdLine.getArgValue' method.

 17

• Return the values from the query method.

2.4.1.3 SetXXX Command Member Functions

Implement a 'set' member function for each command at this object's ACE Service Hierarchy
level that changes state in an ACE Service Daemon. Note that this is different than in the Data
Thread where most command methods are declared at their appropriate class hierarchy level and
only implemented at the leaf class level.

Example: The ACE Service Daemon ‘reset’ command is implemented in the ACEService
command interface class. The ACE Service Daemon ‘setPowerState’ command is implemented
at the ACEDevice command interface level.

Note that it is not required to have a one-to-one correspondence between network commands and
query methods. It may be reasonable to have several query methods that use the same network
command. It is also reasonable to have a single query use more than one network command.

By convention all state change methods begin with the letters ‘set’.

Design:

 The member function does the following:

• Get the command's semantics object from the object using the inherited
'getACECmdSemantics' method.

• If the semantics is not found print out a meaningful debug message and abort the program.
We have found a programming error.

• Use the 'ACECmdLine' object constructor with the above semantics as an argument to create
a command line object.

• For each query argument do the following:

• Use the 'addArg' method of the 'ACECmdLine' object to add the argument and its value
to the command.

• If there is an error trying to add the argument to the command line then print out a
meaningful debug message to standard error and abort the program. We have found a
programming error.

• Use the service objects 'sendMessage' method with the 'ACECmdLine' object as and
argument to send the command to the daemon.

2.4.2 Client Notification

 18

3 Glossary
<Refer to a project glossary for terms used throughout the project>

(TBS)

4 Change Log
Version Date Changes
0.1 Jan, 12 2001 Initial Working Version

5 Notes

•

