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Abstract

In this paper, we present an efficient implementation of a
non-contiguous orthogonal frequency division multiplexing (NC-
OFDM) transceiver for cognitive radio systems. NC-OFDM is
designed to transmit information in the presence of incumbent
users, deactivating subcarriers located in the vicinity of these
users to avoid interference. Given that the core component of
an NC-OFDM transceiver is the fast Fourier transform (FFT),
and that several of the subcarriers are deactivated, it is possible
to reduce the execution time by “pruning” the FFT. We propose
an algorithm that efficiently and quickly prunes the FFT for
NC-OFDM transceivers. Results show that the proposed algo-
rithm substantially outperforms other FFT pruning algorithms
when a medium to large number of subcarriers have been deac-
tivated.

1 Introduction

As access to available spectrum is becoming increasingly
difficult, several researchers have proposed the concept of
spectrum pooling1, as well as several transceiver designs
for transmission across non-contiguous portions of spec-
trum, to alleviate this problem. For instance, orthogonal
frequency division multiplexing (OFDM) is a promising
candidate for a flexible spectrum pooling system [1]. In
order to support high data rates, the transmission band-
width of the OFDM transceiver must be large. However,
a large contiguous bandwidth may not be available for
transmission. To provide high data rates while avoiding
interference with incumbent user transmission, a variant
of OFDM called non-contiguous OFDM (NC-OFDM) was
proposed [2–4], where the implementation achieves high
data rates via collective usage of non-contiguous blocks
of subcarriers. Simultaneously, NC-OFDM avoids inter-
ference with incumbent users by deactivating subcarriers
within their vicinity. Thus, NC-OFDM is a viable trans-
mission technology for cognitive radio transceivers [5] op-
erating in dynamic spectrum access (DSA) networks.

In the implementation of an OFDM transceiver, the fast

This work was supported by NSF grants ANI-0230786 and ANI-
0335272.

1Spectrum pooling is a resource sharing strategy with the highest
priority for the owner of the license to enhance spectral efficiency. It
enables the secondary utilization of already licensed frequency bands
as aimed at by several regulatory authorities worldwide [1].

Fourier transform (FFT) algorithm is employed to make
modulation and demodulation highly efficient in terms of
hardware and computational complexity [6]. However, an
NC-OFDM may have several subcarriers that are deac-
tivated, i.e., zero-valued inputs. Thus, the hardware re-
sources of the FFT are not fully being exploited. There-
fore, a new approach is needed to efficiently implement the
FFT when several subcarriers are deactivated.

It has been shown that for situations in which the rela-
tive number of zero-valued inputs is quite large, significant
time savings can be obtained by “pruning” the FFT al-
gorithm2 [7]. Several algorithms have been proposed in
literature for enhancing the efficiency of the FFT algo-
rithm based on decimation-in-time (DIT) and decimation-
in-frequency (DIF) algorithms [8–15]. However, most of
these algorithms are suitable only for systems with specific
zero-input pattern distributions. Furthermore, algorithms
that prune the FFT for any zero-input pattern do not yield
an efficient implementation with respect to computational
time [8].

In this paper, we present an FFT pruning algorithm
designed for NC-OFDM transceivers. The proposed algo-
rithm can quickly design an efficient FFT implementation
for any zero-input pattern. The performance of the pro-
posed algorithm is compared with several other algorithms
proposed in the literature with respect to mean execution
time. The rest of the paper is organized as follows: Sec-
tion 2 introduces the NC-OFDM framework. Section 3
provides provides an overview of FFT pruning algorithms.
Section 4 presents the proposed algorithm. Simulation re-
sults are presented in Section 5, while several concluding
remarks are made in Section 6.

2 NC-OFDM Framework

A general schematic of an NC-OFDM transceiver is shown
in Fig. 1. Without loss of generality, a high speed data
stream, x(n), is modulated using M-ary phase shift key-
ing (MPSK)3. Then, the modulated data stream is split
into N slower data streams using a serial-to-parallel (S/P)

2FFT pruning refers to the procedure for improving the efficiency
of the fast Fourier transform by removing operations on input values
which are zeroes, and on output values which are not required [7].

3Other forms of digital modulation, including MQAM, can also
be employed by the transceiver.
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Fig. 1 Schematic of an NC-OFDM transceiver.

converter. Note that the subcarriers in the NC-OFDM
transceiver do not need to be all active as in conven-
tional OFDM. Moreover, active subcarriers are located in
the unoccupied spectrum bands, which are determined by
dynamic spectrum sensing and channel estimation tech-
niques [3, 16, 17]. The inverse fast Fourier transform (FFT)
is then applied to these modulated subcarrier signals.
Prior to transmission, a guard interval with a length
greater than the channel delay spread is added to each
NC-OFDM symbol using the cyclic prefix (CP) block in
order to mitigate the effects of intersymbol interference
(ISI). Following the parallel-to-serial (P/S) conversion, the
baseband NC-OFDM signal, s(n), is then passed through
the transmitter radio frequency (RF) chain, which ampli-
fies the signal and upconverts it to the desired center fre-
quency.

The receiver performs the reverse operation of the trans-
mitter, mixing the RF signal to baseband for processing,
yielding the signal r(n). Then, the signal is converted into
parallel streams using S/P converter, the cyclic prefix (CP)
is discarded, and the fast Fourier transform (FFT) is ap-
plied to transform the time domain data into the frequency
domain. After compensating distortion introduced by the
channel using per-tone equalization [18], the data in the
active subcarriers is multiplexed using a P/S converter,
and demodulated into a reconstructed version of the orig-
inal high-speed input, x̂(n).

From this system overview, we observe that the IFFT
and FFT blocks are critical components of the transceiver.
In the next section, we will describe how it is possible to
implement efficient versions of these blocks.

Frequency

Usable Subcarrier Unusable Subcarrier

Fig. 2 Subcarrier distribution over wideband spectrum

3 FFT Pruning Technique

In a wide-band communication system, a large portion of
frequency channels may be occupied by other transmis-
sions, whether incumbent or other unlicensed users. As a
result, these subcarriers are off-limits to our transceiver.
Thus, to avoid interfering with these other transmissions,
the subcarrier within their vicinity are turned off, or nulled,
as shown in Fig. 2. For the FFT and IFFT blocks, these
null subcarriers are represented as zero-valued inputs. For
highly sparse available frequency spectrum, the number of
zero-valued inputs in the FFT may be significant relative
to the total number of the usable subcarriers. When the
relative number of zero-valued inputs is quite large, sig-
nificant time saving can be obtained by pruning the FFT
algorithm.

For instance, an 8-point DIF FFT butterfly structure
is shown in Fig. 3, where ai represents the ith input sig-
nal to the FFT block. Suppose the incumbent users are
located at subcarriers a1, a5, a7 and a8. Therefore, input
data over all these carrier must always be zero. For a
conventional FFT algorithm, the total number of multipli-
cations and additions would be N log2 N . However, with
an FFT pruning algorithm, the unnecessary multiplica-
tions and addition operations at the stages b1 and b5 can
be pruned as their values will always be zeroes. Moreover,
multiplications and additions at nodes b3, b4, b7, and b8 can
be replaced with simple ‘copy’ operation, whereas addition
operations in nodes c1, c3, c5, and c7 can be pruned to save
the FFT computation time. Therefore, the FFT compu-
tation time can be significantly improved with partial and
complete pruning.

In wideband communication systems, the channel con-
ditions and incumbent user occupancy4 (ISO) varies over
time. Thus, the FFT pruning algorithm should be able
to design an efficient FFT implementation every time the
channel condition and ISO changes.

3.1 General FFT Pruning Algorithm

Alves et al. proposed an FFT pruning algorithm that op-
erates on any zero-valued input distribution [8]. Suppose
we have a radix-2 FFT algorithm with N levels (2N FFT
points). A matrix Mi, with N columns and 2N rows is
generated using Algorithm 1. Each element of the ma-
trix corresponds to a addition/multiplication node of the
FFT flow graph. The node needs to be computed if the

4Incumbent spectral occupancy (ISO) is defined as the fraction of
the intended transmission bandwidth occupied by incumbent user
transmissions.
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Fig. 3 FFT butterfly structure. A value of ‘0’ denotes a
zero-valued subcarrier and ‘x’ denotes a data bearing subcar-
rier. The dotted lines represent the computations that can be
pruned.

corresponding element in the matrix Mi is non-zero. On
the other hand, if the element of the matrix is zero, the
corresponding node does not need to be computed. For
instance, the matrix Mi for the FFT butterfly structure in
Fig. 3 would be:

Mi =

























0 1 1
1 1 1
1 1 1
1 1 1
0 1 1
1 1 1
1 1 1
1 1 1

























.

To obtain the matrix Mi, a subcarrier input vector with
2N elements, where each element of this vector correspond
to each input element. If the input element is nonzero,
the corresponding vector element will be unity, and if the
input element is zero, the corresponding vector element
will be zero. By using this input vector, we can compute
the first column of the matrix Mi. In turn, by using the
first column of the matrix Mi, second column of matrix Mi

can be obtained, and so forth. The algorithm to obtain the
matrix Mi is presented in Algorithm 1.

Note that the FFT pruning algorithm proposed by
Alves et al. uses conditional statements [8]. However, it is
known that time to execute the conditional statement often
exceeds the savings obtained by the fewer operations [19].
Therefore, we propose a re-indexing algorithm and modi-
fied FFT pruning algorithm to avoid using the conditional
statements and reduce FFT computation times.

4 Proposed Algorithm

To save an execution time, the proposed algorithm builds
upon the previous algorithm by avoiding the use of con-
ditional statements. The proposed FFT pruning algo-
rithm is shown in Algorithm 2. The algorithm is based on
Cooley-Tukey divide-and-conquer algorithm that uses in-
place computation [20]. For a radix-2 FFT, Cooley-Tukey

Algorithm 1 Generate Mi (proposed by Alves et al. [8])

function Mi=generateMi(m,ivector)

1: n = 2m

2: Mi = zeros(n, m)
3: for l = 1 to m do

4: shift1 = 2(m−l)

5: shift2 = 2 × shift1
6: for j = 1 to shift1 do

7: for k = shift2 : shift2 : n do

8: j1 = k − shift1 − j + 1
9: j2 = j1 + shift1

10: j1 = k − shift1 − j + 1
11: j2 = j1 + shift1
12: if l == 1 then

13: if ivector(j1) == 1 then

14: Mi(j1, l) = 1
15: Mi(j2, l) = 1
16: end if

17: if ivector(j2) == 1 then

18: Mi(j2, l) = 1
19: Mi(j1, l) = 1
20: end if

21: else

22: if Mi(j1, l − 1) == 1 then

23: Mi(j1, l) = 1
24: Mi(j2, l) = 1
25: end if

26: if Mi(j2, l − 1) == 1 then

27: Mi(j2, l) = 1
28: Mi(j1, l) = 1
29: end if

30: end if

31: end for

32: end for

33: end for

34: return Mi

algorithm divides the problem size into two interleaved
halves with each recursive stage. This manner of computa-
tion requires the computations proportional to N log2 N ,
whereas the equivalent discrete Fourier transform (DFT)
would require the computations proportional to N2. In
this work, the proposed algorithm operates in the simi-
lar manner. Additionally, the proposed algorithm prunes
the unnecessary multiplication and addition operations at
the nodes in the FFT flow graph, in order to reduce the
execution time for the FFT computations.

First, the matrix Mi similar to the one in Section 3.1 is
calculated, where each element of the matrix corresponds
to a node of the FFT flow graph. Suppose we have a
radix-2 algorithm with N levels (2N FFT points). Then,
the matrix Mi has N columns and 2N rows. Second, infor-
mation in the matrix Mi is processed to the matrix Mindex,
where indices and the total number of nonzero elements in
each column of the matrix M are recorded. To obtain the
matrix Mindex, we employ Algorithm 3. The matrix Mindex

has N columns and 2N +1 rows. For the example in Fig. 3,



Algorithm 2 Proposed FFT Pruning Algorithm
1: m = 10
2: n = 2m

3: i =
√
−1

4: for l = 1 to m do

5: le = 2(m+1−l)

6: le2 = le/2
7: u = 1
8: w = cos(π/le2) − sin(π/le2) × i
9: for j = 1 to le2 − Mindex(1, l) do

10: for ii = 1 to Mindex(j + 2, l)−Mindex(j + 1, l)− 1 do

11: u = u × w
12: end for

13: for k = Mindex(j + 2, l) to n do

14: ip = k + le2

15: t = x(k) + x(ip)
16: x(ip) = (x(k) − x(ip)) × u
17: x(k) = t
18: k = k + le
19: end for

20: u = u × w
21: end for

22: end for

the matrix Mindex would be:

Mindex =





























6 8 8
2 1 1
3 2 2
4 3 3
6 4 4
7 5 5
8 6 6
0 7 7
0 8 8





























.

The first row of the matrix Mindex tells the number of
nodes and the column of the matrix Mindex provides the in-
dices of the nodes that needs to be calculated in each FFT
stage. Proposed FFT pruning algorithm in Algorithm 2
uses information provided by Mindex to prune unnecessary
computations at the corresponding nodes, hence reducing
the execution time for the FFT computation.

5 Simulation Results

For the simulations, N = 1024 BPSK-modulated subcar-
riers were employed. Mean execution time for the FFT
operations for the original Cooley-Tukey algorithm, the al-
gorithm by Alves et al., and the proposed algorithm were
compared for 10,000 random data inputs, with the range
of sparseness factor5 from 0 − 99%.

In Fig. 4, the mean execution times for the three FFT al-
gorithms are presented for the case of 1024-point FFT. We
observe significant reduction in the mean execution time
for calculating the FFT with the proposed algorithm as
compared to the conventional Cooley-Tukey algorithm for

5Sparseness factor simply denotes the fraction of the zeroes in a
given data set.

Algorithm 3 Proposed Mindex Calculator

function Mindex=generateindex(Mi)

1: [n, m]=size(M) % n rows, m columns
2: y=zeros(n, m)
3: for j = 1 to m do

4: te=find(M(:, j))
5: y(1:length(te), j) = te
6: end for

7: y = [sum(M, 1); zeros(1, m); y]
8: j = [1 : m]
9: y(1, :) = (n − y(1, :))./2j

10: return Mindex = y

the sparseness factor of 60% or higher. On the other hand,
for a sparseness factor of less than 60%, the proposed algo-
rithm performs slighly worse. Moreover, we find the time
to execute the conditional statements exceeds the savings
obtained by the FFT pruning. We observe reduction in the
mean execution times of the proposed algorithm for calcu-
lating the 1024-point FFT with increase in the sparseness
factor. However, the mean execution time of Cooley-Tukey
algorithm and Alves et al. algorithm remain relatively con-
stant all the time.

In Fig. 5, the mean number of multiplications employed
by 1024-point FFT are presented for three FFT algo-
rithms. We observe that the reduction in the multipli-
cation and addition operations due to FFT pruning. The
reduction in addition and multiplication operations with
the proposed algorithm is same as that achieved by Alves
et al. algorithm. On the other hand, the proposed algo-
rithm avoids using conditional statements. Therefore, the
proposed algorithm achieves reduction in FFT computa-
tion time.

6 Conclusion

In this paper, we present an FFT pruning algorithm for use
in NC-OFDM transceivers. The proposed algorithm can
accept any zero-valued input distribution and prune the
FFT to yield an implementation that results in a faster
execution time. Given that the cognitive radio units em-
ploying NC-OFDM would need to quickly adapt to the
changing operating environment, and that the hardware
resources of small form factor cognitive radios are limited,
such an algorithm would be very beneficial.
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Fig. 4 Mean execution times for 1024-point FFT employing
the three FFT algorithms
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