Sprint Voice Transport Over ATM NetworKk:
Real-Time I mplementation

Khoi Nguyen
David W. Petr
Joseph Evans
Victor Frost

Telecommunications & Informations Sciences Laboratory
The University of Kansas
Lawrence, KS 66045-2228

July 1995

Abstract

As ATM (Asynchronous Transfer Mode) is coming in the near future,
accompanied by its high-speed transmission and switching backbone,
real -time multimedia applications such as teleconferencing have found
it agood match for voice and data transport. Telephone -grade speech,
conventionally transported over a circuit-switch telephone network, is
no exception in finding multimediapotential in ATM. Infact, using the
AAL1 (ATM Adaptation Layer Type 1) for constant bit rate services,
transporting 64 Kbits/s PCM voice over an ATM network has been
widely supported and researched.

This report describes the real-time implementation of the nec-
cessary interfaces when such atransportation is not only over the ATM
network but also over the existing PSTN (Public Switched Telephone
Network). In this case, the ATM network will serve as an intermediate
network for which voice quality accessments under controlled cell loss
and delay conditions can be made. In particular, there are two inter-
facesthat must be implemented: the telephone-ATM network interface,
and the ATM network-to-PSTN interface. Because of the availabil-
ity of hardware interfaces, only software implementation was actually
carried out; however, both hardware and software implementations are
discussed in detail.

Contents

1

Introduction:

2.2 Capabilities Available On The Demonstration System:
2.3 Limitations Of The Demonstration System:

Audio Hardware:
3.1 DECAlphasBaseBoardAudio:
3.2 DECAIlphasTURBOChannel DECaudio:

Audio Softwar e

422 InputandOutputModels:
4.3 AudioFileClients: o o

44 AudioFileServers- AaxpandAlofi:

W W NN N

w

N

© ©O© N N N g

5.3 Client Modifications: e 22

54 Server Modifications: o o oo 22
54.1 DIA modifications: 22

54.2 DDA Maodifications: 24

6 Software Developmentsfor DSO M SB/L SB Scheme: 28
6.1 Phasel: Emulation of ATM cellsusing UDP packets: 28
6.1.1 Transmitter: 29

6.1.2 Recalver: e 32

6.1.3 Telephone Access Capability: 32

6.2 Phasell: Conversion FromUDPToAALL: 38

7 Graphical User Interfaces: 38
7.1 AlphaAlphaGUI: o 38
7.2 AlphaDECaudioGUI:. 40

8 Problems associated with DECaudio’s phoneinterface: 41
8.1 HardwareConfiguration: 41
8.2 SoftwareConfiguration: 42
8.3 Echo Problem & Attempted Approaches: 44
8.3.1 Adding acompensationnetwork: 46

8.3.2 Implementing an echo canceller inside Alofi server: 47

8.3.3 Implementing an echo canceller insidetheDSP: 53

8.4 Noise Problem & Attempted Approaches: 53

9 Conclusions& Areas For Future Work: 54

10 Acknowledgements: 56

List of Figures

© 00 N oo o0 b~ W N B

[
= O

12
13
14
15
16
17
18
19
20
21
22
23
24
25

Voice-Over-ATM Prototype Configuration.
DECaudio-Phone Configuration

AudioFilelnputModel. oo

1
4
AudioFileTransport Protocol 6
8
AudioFileOutputModel. oL, 8

Typical communication between client apass and server (Aaxp/Alofi). 10

Server implementation.o 12
AudioFilewithitsoriginal functionalities. 13
AudioFilewith modifications. 14

Time dependency between transmitter and receiver for aplay request. 15

Time dependency between transmitter and receiver for a record

FequESt. e e e e e e e e e e e 16
Overdl structureof AudioFile. 17
AFPlaySamplesoperation in the original AudioFile.. 19
AFPlaySampleswith modifications. 21
Operations of original AudioFile'sdispatcher. 23
Data sample flow between server and hardware buffer. 25
Operations of codecPlay handler inthe original AudioFile. 27
Format of the ATM-emulated UDP packetused. 28
Transmitter’simplementation. 30
Receiver’'simplementation, part1. 33
Receiver’'simplementation, part2. 34
Receiver’'simplementation, part3. 35
Modified configuration for voice over ATM network. 36
Flow diagram of rdia application. 37

Alpha-AlphaGUI. oo 39

26
27
28

29
30
31
32
33

35
36
37
38
39
40

Alpha-DECaudioGUI., 40

Detailed Block Diagram Of The DECaudio Hardware. 42
Detailed Block Diagram Of DECaudio’s DAA, an analog telephone
interface. e e e 43

Detailed Block Diagram Of DECaudio’s CodecO (Telephone Codec). 43
Detailed Block Diagram Of DECaudio’s Codecl (Handset Codec). 44

Configurationwithnoechosobserved. 45
Configuration withechosobserved. 45
Transmit Driver/Receive Hybrid Section. 46
Echo buffers' structures and sample collection process. 48
Alofi with echo cancellationembedded. 49
Flow operation of LMS algorithmimplemented. 50
Echo recorded from aflick at timetl. 51
Echo recorded from aflick at timet2. 51
Echo recorded from aflick at timet3. 52
Echo recorded from aflick at timet4. 52

List of Tables

1 Programmable Registers

@ Public Switch

Telephone

Magic ATM
Network

-

ATM-Voice Interfaces

Telephone Network

Figure 1: Voice-Over-ATM Prototype Configuration

1 Introduction:

1.1 Implementation Goals:

This technical report concerns the real-time implementation of voice on an ATM
network, as part of the Voice On ATM Project funded by Sprint. In particular, it will
describe in detail the implementation of a real-time demonstration system, which
will provide a tool for evaluating voice over ATM networks. The implementation
of the system is based on the proposed system solutions as described in [1], and
is matched as closely as possible to the design proposed in [2]. This research is
being coordinated with other ongoing research effortsat KU, i.e., the Sprint-funded
project “ Development of Design Rules and Associated Tools for ATM Networks’
and the MAGIC testbed project.

To support voice over both an ATM network and the PSTN network, two
interfaces need to be implemented: the phone-ATM network interface and the ATM
network-PSTN interface. Figure 1 shows the desired configuration. During the
whole course of this project, our goal has been that the implementations will be
based as much as possible on existing supported software and equipment. As
initially proposed, the interface devices could be interfaced directly to the MAGIC
network through DEC AN2 ATM switches. But after carrying out feasibility studies,
itwasfoundthat DEC Alphaworkstationsarethe best interfacechoices. Threemain
reasons behind thisdecision are: their performance, software support under OSF/1,
and most importantly, the less complex nature of the implementation. Another
reason why Alphaworkstations are chosen is that the “otto” board which interfaces
to the ATM is implemented for use with Alphas. Thus, software development
around the otto device driver would be possible.

1.2 Hardware and Software Consider ations:

Toimplement thetwo interfaces, both hardware and software design and implemen-
tations were considered. In the initial project proposal, a hardware interface was
to be developed that, besides having all the neccessary interfacing functionalities,
would allow for flexibility to be added in thefuture. The possible flexibility includes
using digital signal processing (DSP) chips, field programmable gate arrays (FP-
GAYS), and/or microprocessors. Weinitially proposed to implement such aprototype
interface; however, as it turned out, Digital Equipment Corporation (DEC) has a
commercia product known as DECaudio which has most, if not al, the hardware
functionality neccessary for making the interface possible. Section 3 will give an
overview of the DEC Alpha's audio capabilities, and the DECaudio audio device.
Following this section, a description of the software required to drive these audio
devices will be presented in section 4.

2 Summary:

2.1 A Review Of TheWork Done:

The work actually carried out in this project is more than we initially planned,
particularly due to unexpected hardware problems. As mentioned earlier, there
was no hardware development involved due to the availability of DECaudio, an
audio device which has the telephone interface capability. All the work done
was on software development. In particular, much work has been focused on
implementating the system solutions proposed in[1] and [2]. Asfar asthe software
development is concerned, the developed demonstration tool has almost al the
functionalities as proposed in the system solutions. Some cases in [2] were not
implemented because they either rarely occur in ATM networks (the case with bit
errorsin HEC, SN, or SNP) or they are not suitable to be implemented in software
(the case concerning the idle state).

In implementing the proposed model as accurately as possible, extensive
modifications to an existing software package, namely AudioFile, were carried out.
Extensive work on echo cancellation was also done; unfortunately, however, all
attempted approaches could not eliminate the echo problem that was discovered in
the DECaudio hardware.

To enhance the demonstration capability of the developed demonstration
tool, graphical user interfaces (GUIs) were implemented. With these GUIs, the
complexity of the applications developed is effectively hidden, providing the user

an easy-to-use tool to evaluate voice quality under various controlled |oss and delay
conditions.

2.2 Capabilities Available On The Demonstration System:

Two GUIs, namely the Alpha-Alpha GUI and the Alpha-DECaudio GUI, were
implemented to enhance the demonstration capability. Section 7 provides more
detail about the GUIs. With the Alpha-Alpha GUI, users (local and remote) can
talk over an Ethernet or ATM network through handsets attached to the hosts. The
voice transport accurately emulates the voice-over-ATM system presented in [2].
Each user can change cell loss rates, cell delay and transmit/receive gains during
the connection. Since the GUI is menu and button-based, users would find it avery
convenient and easy-to-use tool.

In addition to the Alpha-Alpha GUI capabilities, the Alpha-DECaudio GUI
allowsthe user to dial any telephone and conduct a full-duplex telephone conversa-
tion using a handset attached to the host.

2.3 Limitations Of The Demonstration System:

Asdiscussed in section 8, the DECaudio device has serious echo and noise problems.
Different approaches were carried out in attempting to solve the problems; unfor-
tunately, none have yielded any successful result. The echo and noise problems on
the DECaudio device significantly limit the demonstration capability of the Alpha-
DECaudio GUI. However, only the handset side has the noise and echo problems;
the remote telephone side has proved to be quite clear and echo-free. Thus, the
Alpha-DECaudio GUI could be still an useful demonstration tool if users are only
concerned about the voice quality on the remote telephone side. The Alpha-Alpha
capability does not have these limitations because it does not use the DECaudio
device.

3 AudioHardware:

3.1 DEC Alpha'sBaseBoard Audio:

As shipped with all Alphas, an audio port, called the Baseboard, is available for
use in audio proccessing. The Baseboard includes a CODEC device operating at

Alpha/Mips

‘ Public Switch
DECaudio module
‘f N / Telephone Network
!

\ I‘\ N @ Phone Jack

Telephone

TURBOChannel

Figure 2: DECaudio-Phone Configuration

a fixed sampling rate of 8KHz (8000 samples/sec); thus, it is suitable for phone-
grade audio processing. The sampling type can be configured to either A-law or
mu-law; however, samples are encoded in mu-law format by default (8 bits/sample).
Through this audio port, a handset, a microphone, a headphone, or a headset can be
attached for voice recording and playback. With appropriate software provided, the
recording samples can be captured inside the host, and can then be used for further
audio processing. Similarly, samples availableinside the host can be readily played
out to this port.

3.2 DEC Alpha’'s TURBOChannel DECaudio:

DECaudio is an optional module for the Alpha/DECstation which interfaces with
the Alpha/Decstation system module through the TURBOChannel bus. The TUR-
BOChannel busis a high-performance, synchronous asymmetrical 1/0 channel that
is used as an interface between the Alpha system and external modules. Viathis
bus, the host and the external module will have both read and write access (sharing
memory for instance) to each other. DECaudio, besides having the same audio
capabilities as the BaseBoard, also supports an interface between an Alpha and
the telephone equipment viathe DAA (Data Access Arrangement) module. Figure
2 shows the general configuration when DECaudio is interfaced with the PSTN
(Public Switched Telephone Network).

Other interesting features of the DECaudio, according to [5], include:

e The ability to detect incoming rings from the telephone line and the states of
the telephone (on-hook or off-hook). The host system will always have this
information available at any instant of processing time viathe TURBOChan-

nel bus. Besides, via the telephone interface, the host system can dial any
phone when appropriate software is provided.

e A DSP chip for off-loading real-time, compute-intensive activities from the
host. This feature enables the DECaudio to provide many useful audio pro-
cessing applications including echo cancellation, and HiFi audio processing.

e AnISDN 'S interface (basic rate interface) for future ISDN applications.

Unfortunately, we discovered that the hardware design of the DECaudio
telephone interface is serioudly flawed, limiting its usefulness. These problemsand
our attempted solutions are discussed in detail in Section 8.

4 Audio Software:

The audio software to support the Baseboard and DECaudio audio devicesis called
AudioFile. AudioFileis a portable, device-independent, network-transparent sys-
tem for distributed audio applications. It was developed by the Digital Equipment
Corporation Cambridge Research Lab. Similar to the X Window System, AudioFile
allowsmultipleclients, supportsavariety of underlying hardware, and permitstrans-
parent access through the network. Many platforms are supported with AudioFile
system: Digital’s RISC DECstations under ULTRIX, Digital’s Alpha AXP systems
under DEC OSF/1, Sun SPARC systems under SunOS, and Silicon Graphics Indigo
workstations under IRIX. With AudioFile, many audio processing applications are
available which include: audio recording, playback, audio/video teleconference,
answering machines, voice mail, telephone control, speech recognition, and speech
synthesis. A number of audio data types and sample rates are supported, from 8
KHz phone-grade quality to 48 Khz high-fidelity stereo. The following section will
present more features of AudioFile, including its core client applications and its
servers.

4.1 Protocol Description:

The current version of AudioFile supports TCP/IP and UNIX-main sockets. Thus,
AudioFile gaurentees that data transport between the client and the server is reli-
able. Figure 3 [13] shows atime line of the typical scenario that takes place for a
connection-oriented transfer at the socket level. Based on the same principlesasthe
X Window System protocol, control and audio data are multiplexed over a single
byte-stream connection between the client and the server. Over this connection,

5

Server
(connection-oriented protocol)

socket()
bind()

Client

accept()
v socket()

blocks until gonnection . .
fromlcllent connection establishment @@
— data (request) [@
process request
data (reply)

" read

Figure 3. AudioFile Transport Protocol

more than one audio stream can be carried. With multiple clients running on multi-
ple machines of different architectures, AudioFile allows these clients to share the
same server at the same time.

At connection setup, the client and the server exchange version information
besides the provision of the server authentication information from the clients, just
asinthe X Window System. Once a connection is established, clients communicate
with the server through protocol requests for a particular service. All protocol
requests have a length field of 16 bits (expressed in 32-bit units), an opcode of 1
byte, and an optional opcode extension. User audio data encapsulated inside the
requests are kept naturally aligned (on a 32-bit boundary) inside the request header.
The length field of requests limits the longest request to 262144 bytes, although in
practice, AudioFile's longest request is substantially shorter. For instance, in the
apass program, long play and record requests are segmented into 8K byte pieces.

6

In thisway, AudioFile ensures that no single request will monopolize the server for
avery long time.

AudioFilehas atotal of 37 requests, most of which arerelated to audio (play
and record requests). The remaining requests are for access control and inter-client
communications. A complete list of these requests can be found in [4].

4.2 AudioFile Abstraction:
421 Time

Audiotimeisused inthe protocol and at the client library API (Application Program
Interface). It is also fundamental to the correct operation of the audio server where
recording and playback operations are processed in association with audio time. In
particular, recording and playback operations in the AudioFile system are tagged
with time values that are directly associated with the relevant audio hardware. For
instance, the DECaudio audio device hasits own clock running, so when a playback
is destined for DECaudio, the playback time associated with the request packet is
with reference to DECaudio’s clock. If there is any time difference between the
server’s clock the DECaudio clock, a time update will be carried out so that time
consistency is guarenteed.

At any time, the server can directly access time information of the audio
device to which it is connected. In fact, the server maintains a representation
of the audio device's clock in a“time register”. The server uses this device time
informationfor scheduling events, such as playbacksand recordings, for aparticular
audio device. At server startup, the device time is initialized to O and advances
thereafter. As implemented, the device time is represented by a 32-bit unsigned
integer that increments once per sample period and wraps around on overflow. At
a sampling rate of 8000 samples per second, the overflow period is equivalent to 3
days, thus posing no significant problems for real-time applications such as voice
conversations.

4.2.2 Input and Output Models:

The input model and the output model for AudioFile are shown in figures 4 and 5
[4], respectively. The models represent the operations actually carried out within
the AudioFile server. Both models buffer 4 seconds of sample data, and the sample
data within a particular buffer are indexed by the current value of time. For the
input model, clients requesting input data older than four seconds in the past are
given silence by the server. Record requests that fall within the past four seconds

7

client
=——| Conversion
data
Server record e m oo
. buffer ! }
] [) . Receive

o Time ; Gain |<——— FromA/D
H ! audio
|

. Lo)

client . hardware gain
<— Conversion
data
(Samplerate, data type)
Figure4: AudioFilelnput Model.
Client specified gain G[i]
client
data (mixing by defaut)
Tt
. | Transmit
. . Mixer I audio ToD/A

client

,,,,,,,,,,, 1
hardware gain
——=| Conversion

(Sample rate, data type)

data

Figure 5: AudioFile Output Model.

return the buffered data. Record requests that fall into the near future will have the
server not to return until the time advances far enough to service the request. For the
output model, clients can schedule playback requests at any time from the present
to four seconds into the future. Playback data that falls in the past is replaced by
silence; whereas, playback data that falls into the near future will be buffered and
guaranteed to be played out unless it falls beyond four seconds in the future. Also,
it is the server responsibility for ensuring that the samples in the output buffer are
sent to the D/A converter at their corresponding values of the time register viatime
indexing into the buffer.

4.3 AudioFileClients:

AudioFileincludesanumber of coreclients(referto[4] for acompletelist) for audio
processing and phone processing. For the software development of thisproject, only
apass and aphone clients were found appropriate for modification and expansion.
The next section will present more detail of these two clients.

4.3.1 apassClient:

AudioFile's apass is used to transport audio data by copying audio data from one
server (local) to another server (remote). Figure 6 shows the whole transporting
process. As mentioned earlier, all playback/recording requests by the clients to the
server are tagged with time values. The server will use this time information to
schedule the requested event.

The basic operation is that apass will request recorded data from the local
server which recordsaudio datafrom an audio device attached toit. It thentransports
this recorded data to the remote server. The remote server will then playback the
received data to a remote audio device attached to it. Obviously, apass will have
to establish two connections before any transport of data is to be carried out: the
duplex channel from apass to local server, and the duplex channel from apass to
remote server. As mentioned earlier, these channels are TCP connections. As
to be discussed later, one of the main modifications to the AudioFile system as
part of the software development was to create two channels: the TCP channel
and the connectionless channel (UDP for instance). The TCP channel is used for
transporting control information (such as protocol requests); the connectionless
channel is for transporting audio data. Incorporating the requirements of the ATM
transport scheme, modificationsto the AudioFile system were at low-level interfaces
of AudioFile. The modificationswill be presented in section 5.

L ocal Remote

Audio Audio

Device Server Client Server Device
T [T !

- | ! |

Pi:;dlci o samples : periodic_ 7: samples :
tpdate : | update | |
‘ (fromA/D) | i (to DIA) |

! ‘ L !

connection request

version, authentication
information
device information

(sampling rate, Mono/HiFi,
Baseboard, DECaudio...)

connection established connection request

version, authentication information

[
connection established E

1

1

1

/ |
record request !

1

1

\ !
samples :

play request !

1

1

reply packet (time, sequence number) :

1

1

. . !

1

. . !

1

. . |

v

Figure 6: Typical communication between client apass and server (Aaxp/Alofi).

10

4.3.2 aphoneclient:

AudioFile’'saphoneclient isused to provide phonedialing capability. Itscapabilities
are mainly used with DECaudio hardware to support phone dialing. The client
enables the host to emulate the dialing process to a phone jack connected to the
DECaudio audio device. Thedialing processis carried out by the server and viathe
playing process. Before requesting the server, the client will convert each individual
digit to the dual-tone-multiple-frequency (DTMF) format. Then each tone pair will
be sent to the server as separate play requests. Upon receiving these play requests,
the server treats them as no different from the regular play requests; thus, each
sample of the tone pair will be considered as a play request. Since the DECaudio
has internal dialing hardware, the tone pair received from the server will be played
out as conventional tone dialing. Client aphone is actually not used in this project,
but some of its operational principles were used in the software development.

4.4 AudioFile Servers- Aaxp and Alofi:

For this project, only the Aaxp server and the Alofi server were found appropriate
for use and modifications. As mentioned earlier, the Aaxp server can run only
under Alpha/OSF and is for the built-in baseboard; whereas, Alofi runs under both
Alpha/OSF and DECstation/Mips, and is for DECaudio audio hardware. The two
servers, even though they have different capabilities, share some common code of
AudioFile. In particular, Alofi has al the capabilities that Aaxp server has; besides,
it also has phone-control capabilities.

441 Server Implementation:

Like an X server, AudioFile is organized into three main components: the device
independent audio (DIA), the device dependent audio (DDA), and the operating
system (OS) component. Figure 7 shows the structure of AudioFile. The DIA
section is responsible for managing client connections, dispatching client requests,
sending replies and events to clients, and executing the main processing loop. As
the name implies, the DIA section provides common code for both the Aaxp and
the Alofi server. On the other hand, the DDA section, as the name implies, is used
in according with a particular device. It presents the abstract interface for each
supported device and contains all device-specific code. In particular, AudioFile has
axp and lofi code under the DDA section for the Aaxp server and the Alofi server,
respectively. Finally, the OS section consists of all the operating system-specific
code for maintaining networking operations at the socket level. Much of the OS
section and the DIA section is based on X11R4.

11

,,

WaitForSomething()

-
I
I
I
I
Client, Audio Device, Task : - .
(input events, client requests) , Main()
I
I
I
I
I
I

Needs Attention ?

I
Runs pending tasks. :
I

and client requests

I
I
I
| Then, handlesinput events, |- - — - - - Dispatcher()
I
I
I

,,,,,,,,,,,,,,,,,,

I

I
I

I
I

I
I

I
I

|
I

I
I

I
I

I
I

I
I

I
I

|
I

I
I

I
I

I
I

I
|

I
I

|
I

I
I

I
I

I
I

I
|

I
I

I
I

I
I

I
I

I
I

I
|

I
I

I
I
! |

I
!)
: Request’stype :

I
I

I
I

I
I

I
I

I
|

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I

Index to

Table of protocol request

handler procedures

|
| |

Alofi | |
| |

|

Figure 7: Server implementation.

The DIA and the DDA sections share the AudioDeviceRec structure. This
structure encapsulates the information specific to an abstract audio device such
as type of device (codec, DECaudio, HiFi...), properties of this device, and other
device-specificinformation. Thisstructurealso containstheaudiodevicetime. This
timeinformationisthe server’s copy of thetimeregister, and representsthe server’s
view of current time. Aswill be presented in the next section, this time information
will be periodically updated to reflect time consistency between the server and the
audio device.

12

L ocal Host Remote Host

I I
I
TCP/IP (control & data) @ :
Ga) LS)
I I

Network

(MAGIC ATM Network)

,,,,,,,,,,,,,,,,

Figure 8: AudioFilewithitsoriginal functionalities.

4.4.2 Server Update Process:

To meet real-time applications, sample data recorded from the audio device should
be captured and moved periodically to the server buffer independent of any client
request activity. This mechanism is an update task that keeps the hardware buffer
consi stent and up-to-date once every 32ms (250 samples). Inthisway, the hardware
buffer always reflects the server’s buffer at the time the hardware consumes an
output sample. At each invocation, the update process first moves new record data
from the hardware buffer to the server buffer, and then moves the next batch of
playback data from the server buffer to the hardware buffer.

5 Software M odifications:

AudioFile, intheoriginal version, supports TCP/IPand Unix socketsfor itstransport
of data. Thus, AudioFile guarantees reliable and in-sequence transport of audio
data across the network. Asit turned out AudioFile had to be modified so that the
demonstration system would match the proposed real system as closely as possible.
In particular, AudioFile was modified to support the following capabilities:

e Cell loss under controlled conditions.
e Cell delay variation under controlled conditions.
¢ Independence between transmitter and receiver.
Figure 8 and Figure 9 show the origina AudioFile and AudioFile after

modifications, respectively.

The ability to introduce cell loss and cell delay variation under controlled
conditionsimplied that AudioFile had to be modified to support unreliable transport
of audio data. This required that AudioFile support packet mode besides its only

13

Local Host Remote Host

I
|

i | TCP/IP (control
| Unix Socket Transmitter CDVM < {)
I (Client) | UDP/IP (data)
|
|

! (play)

TCP/IP (control)
UDP/IP (data)

Network

(MAGIC ATM Network)

(record)

(play)

Cell Drop Module
Cell Delay Variation Module

Figure 9: AudioFilewith modifications.

stream mode (TCP/IP). UDP/IP protocol fits this requirement best since packet
dropping does not require retransmissions. Thus, the software was modified so
that TCP/IP carries control information whereas UDP/IP carries packetized audio
data which can be dropped under the user’s control. Even though UDP/IP is not
the ultimate solution for the proposed system, it is a perfectly good transitional
step toward the ATM-packet mode (AAL1) solution. In the ATM-packet mode,
audio data is packetized directly into ATM-sized cells of 53 bytes. The ATM cell
format currently supported by the ATM interface card (between a host and the ATM
switch) isthe AALS format. To model the proposed system even more accurately,
the device driver for the interface card (otto board) could be modified in the future
to add support for the AAL1 cell format. With AAL1, each ATM cell of 53 bytes of
packetized audio data will be passed transparently through the interface hardware
without any processing done on each cell by the interface. When AAL1 format is
supported, we envision no major difficulty to go from UDP/IPto AAL 1 mode since,
asfar asthe kernel is concerned, AAL 1 isjust another protocol.

Another feature of AudioFile that needed to be modified is the dependency
between the transmitter (client) and the receiver (server). In particular, in the
original implementation of AudioFile, the transmitter and the receiver have a very
strict time dependency . For each play request, the transmitter sendsarequest packet
which contains the time (usually near future) the server should start playing the data
along with the audio data itself. The transmitter then waits for areply packet from
the receiver to come back. Upon receiving the request packet, the receiver will
extract the time field from the request packet and process the request only when the
receiver’slocal lock (extracted from the local system host’s clock) is equal to the
time of the request. After processing the request, the receiver will then send back
the reply packet to the transmitter. The reply packet contains the sequence number
of the last request packet, the current time value of the receiver’slocal clock, the
packet type (reply in this case), and the length of the reply packet. Thus the reply
packet from the receiver to the transmitter is nothing but an acknowledgement to
the transmitter from the receiver . Only when reply packet comes back from the
receiver will the transmitter start another request. The transmitter will use the time
value in the reply packet to adjust for any time difference between the transmitter

14

77 A m e e m e -
| : Transmitter (Client) 1 Receiver (Server) :\ g “
[:\ ! By
[| FE
| | playbytes = 8000* cell_size_sec; I :\ % |

! Get local time: J‘ \: =Y
[! Itime = Get_Local_Time(); 0 N1
lay request . -~ |

[N play request 0 N
- =Y e : | ‘: |
I | |
[| Send play request with: packet h :\ |
- + request.time = Itime; : ! \: !
P! + request.nbytes = playbytes; | : | !
I |
- " L
" o

(- | I
| ! | |
- : I ‘: |
I I no | |
b T |IS acket ! no
Lo eply p g Add client request no
P! back . reply | : to Task queue \: !
| 2 . | 1

o S Iy 1 |

E ! : et h :‘ |

o P g Send reply packet: no
| | I Iy p: . [

| e reply.time = Get_Local_Time(); :‘ ,
Fy R reply.sequence++; L
[Anti-jitter mechanism: h o

es I I
] : Isreply.time - Itime > delay_upper_limit (1600 samples) Y | : “ :
| | or reply.time- Itime < delay_lower_limit (0) [:\ |
I . |

I I | |
| | 1 [
[" :‘ |

| I

I I |
- 1 Get next request :\ |
| | R " in Task queue o
P Process next play: Itime = reply.time + optimal_delay(800) ‘ : | ‘: |
| | Itime = Itime + playbytes. ‘ | X |

| | | |
I |

I | | |
! | : | o
[! I

| " L

L o o e e L L ________ N

Figure 10: Time dependency between transmitter and receiver for a play request.

15

Transmitter (Client)

recordbytes = 8000* buffer_size sec;
Get local time:
Itime = Get_Local_Time();

| ‘ :
| |
I
[|
I
1 I :
[!
I
| | :
[|
I
| | I
1 ! : :
: : Send record request with: Lo |
| | + request.time = Itime; | : :
I - . ! Is request.time
| ‘ + request.nbytes = recordbytes; | : eql . Recorded detac ‘
[R ! silence I
b d/‘(o : : local time :
| : ! \ |
| | I : I
| | ! | |
;! no Is o !
X | ket | ! |
! reply pac reply . | ! Return request.nbytes |
| I
back acket, || I
o | : 5 P oo ! of recorded data. X
£ ’ : |
= | : \ :
1 : [I
| | yes | : |
| ! . |
by Process next record: I : Send reply packet: :
| i — . .
! : Itime = Itime + recordbytes. . reply.time = Get_Local_Time(); |
| | | reply.sequencet+; |
| : | : reply.rouffer = recorded audio |
I I
| ! RN ‘
Lo o |
I ! |
| | | ! |
v I [|
,,,,,,,,,,,,,,,,,,,,,,,,,,, L _________

Figure 11: Time dependency between transmitter and receiver for arecord request.

and the receiver (anti-jitter mechanism). If the receiver’s clock seems to run faster
than the transmitter’s clock (the time extracted from the reply packet is larger than
the transmitter’s current time), beyond an unacceptable amount, 800 samples for
instance, the transmitter will try to resynchronize by forcing the time difference
to an optimal amount. Figure 10 shows the time dependency and the anti-jitter
mechanism between the transmitter and the receiver for a play request.

Time dependency also existsin the original AudioFilewhen arecord request
iscarried out. It isalmost identical to the time dependency for aplay request. When
requesting that data be recorded, the transmitter (client) will send a request packet
which contains an empty space for holding the recorded data. Unlike the play
request, the receiver will not return anything (return silence) if the request time is
in the future (the request time value is larger than the receiver’s local clock time).
Thus, only arequest that falls in the latest four seconds of the receiver buffer will
be successfully processed. In either case, the reply packet and the recorded data
will be sent back to the transmitter. Unlike the play request, the transmitter does
not carry out the anti-jitter mechanism to make sure that it does not request a record
in the future, even though it acknowledges the problem (dlip). Figure 11 shows the

16

AudioFile (root,
Client / l \ Server

KOO RO U
| apass apfione Aau AF AFUtl | Alpha Mips Sun ap lofi| dda dia 0s
| mylib
mylib y -
L et . | axp lofi ' R |
Sk N i | ST T
P lib outil_lib ! ! i nv_lib Imslib util_lib: |

Figure 12: Overall structure of AudioFile.

time dependency between the transmitter and the receiver for a record request.

This time dependency between transmitter and receiver had to be removed
to model the proposed system accurately. For the proposed system to be suitable in
area-time environment, the transmitter should not wait for the reply packet just for
areference of thereceiver’'slocal clock. Waiting for areply packet is obviously an
undesirable feature for a teleconference audio application when the transmitter and
thereceiver are far apart. In that case, significant delay would be introduced at both
the transmitter and receiver since the reply packet would experience a significant
propagation delay. The following section will provide more on the modifications
introduced above.

It should be noted that all the modifications on top of AudioFile are put
into separate libraries from AudioFile’s libraries. Figure 12 shows the structure
of AudioFile from the top level where subtrees correspond to subdirectories of
AudioFile. The config and devices are the platform-dependent directory and device-
dependent directory, respectively. There were no modifications done on these two
libraries. The files in the dotted boxes indicate the developed libraries, namely,
tx_lib, rv_ib, util lib, and Imdlib. Libraries tx_lib and rv_lib contain the trans-
mitter’s and receiver’s added capabilities. Library util lib contains error-handling
functions. Finaly, library Imslib contains proceduresrelating to the LM S algorithm
which could be used for echo cancellation purposes.

5.1 Protocol Modifications:
The process of protocol modification turned out to be arather difficult task. One of

the main factors contributing to this difficulty was the fact that AudioFile is built
completely on TCP/IP for its transport of data (control and audio data). Thus, to

17

modify AudioFileso it supportsboth TCP/IP and UDP/IP, one major question arose:
where in AudioFile are modifications appropriate? In other words, at what level of
interface of AudioFile would modifications be appropriate so that other functions
of AudioFile which do not require changes would still work and be unaffected by
the modifications? To be able to solve this complication, extensive research into
AudioFile's source code and its technical report were required. It also required a
full understanding of the structure of AudioFile, especialy in the server section
(receiver).

Before successful modification wasachieved, an attempt was made to modify
AudioFilealmost completely sothat it only supported UDP/IP. Eventhough we knew
conceptually that this approach would not work since control information under
UDP/IP would be lost unexpectedly, we still considered examining this approach
to see how feasible it was and to learn more about AudioFile. It turned out to be
much more difficult than initially planned since there were a lot of modifications
required at different sections and levels of AudioFile. As thistime, we decided to
modify only certain parts of AudioFile. This approach turned out to be a successful
one, and it has the following advantages: less modifications required, and thus
less complexity; less levels of interfaces need to be modified; guarantees parts of
AudiFile that are not modified to still operate as before. Thus, as a whole, this
approach guareenteed a higher success probability than the approach above since
only parts of AudiFile are modified. In the following discussion, more detail will
be presented for this partial modification method.

To modify AudioFile so it supports both TCP/IP and UDP/IP, both the
transmitter side and the receiver side were required to be modified.

With reference to Figure 12, client apass uses the functions of lib directory
for transporting data. Particularly, directory lib/AF containsfile Play.c which carries
out the TCP/IPtransport of audiodata. Actually, procedure AFPlaySamplesinPlay.c
isused to send requests and data. Its sequence of operationsis shown in Figure 13.

The dashed box was modified such that sending the request packet is still
carried out over the TCP/IP channel, but sending of audio data is now done on
a newly created UDP/IP channel. For each TCP control packet, the transmitter
sends 10 49-byte UDP packets (refer to later section on Software Development for
detailed structure of the 49-byte UDP packet). _ASend procedureis no longer used
and replaced by procedure cell _delay. This procedurewill carry voice samples over
aUDP/IP channel. It also has such functions as cell dropping emulation at a given
bit error rate and cell delay variation emulation. Since the server, when receiving
the play request packet, checks for the reg->nbytes field to see how much audio
datais to be played out, reg->nbytes, has to be set to zero for every play request.
In this way, the server will not wait once it gets the request packet; instead, it will

18

play request

Fill up request packet:

+ reg->ac = audio context

+ reg->startTime = start time

+ reg->nbytes = bytes of data sent

+ reg->sampleType = u-law

+ reg->nchannels = 1

+ reg->length = length of request packet

Send request packet:
_AFlush(req) (inside _AReply()); < TCPIP

¢

Send data packet:
_ASend (aud, buf, (long)reg->nbytes);

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

no

Wait for reply packet:
_AReply (aud, (aReply *)&reply, O, aTrue);

Ready for next play

Figure 13: AFPlaySamples operation in the original AudioFile.

19

immediately switch to the UDP/IP channel and wait for the UDP data packets once
it gets the request packet. With thisimplementation, thereis one problem, however,
which is the racing condition. Racing condition occurs when a TCP request packet
and its UDP packet arrive at the receiver at different times. But when incorporating
all the proposed system’s error-handling cases [2] into the modifications, the racing
condition is automatically solved thanks to the replacement algorithm. Thus, like
the transmitter side, the receiver also has to be modified so it will read data packets
from the UDP/IP channel. More detail of server modifications will be presented in
section 5.4.

5.2 Removal Of Time Dependency Between Client & Server:

As mentioned before, the original AudioFile has a strict time relationship between
transmitter and receiver. After sending a play request to the receiver (server), the
transmitter will wait until the reply packet comes back. 1t was pointed out that this
dependency needs to be removed in order to model the proposed system accurately.
Furthermore, it is not needed since its main useis only to return the local time of the
receiver and the sequence number of the last request. The timeinformation returned
from the receiver is used for an anti-jitter delay mechanism while the sequence
number is used for acknowledgement purposes. Removing this dependency will
consequently improve overhead efficiency since there is no need to have a reply
packet for every request.

So, if there is a way to let the transmitter know that its last request was
always guaranteed a success, it should be possible to completely omit the reply
packet. Oneway of doing thisisto fakethereturn of areply packet. Thisprocessis
a 3-step process and requires three new procedures. _fakeASend, _fakeAReply, and
cell_delay. Basicaly, the first two procedures replace the _ASend (thus _AFlush),
and _AReply procedures for the purpose of sending a reply packet and for fake
acknowledgement of the reply packet. The cell delay procedure is the developed
procedureto transport packeti zed audio dataover the UDP/IP channel. Themodified
AFPlaySamplesis shown in Figure 14.

It should be noted that the field reg->nbytes of the request packet is now
set to zero. Setting it to zero will implicitly signal the receiver not to wait for the
audio data on the TCP/IP channel, as discussed earlier. The _fakeAReply basically
just acts as if areply packet is actually received by carrying out all the operations
originally done at the receiver. These operationsinclude: keeping track of the type
of the packet coming back (reply packet), keeping track of sequence number of
the current request at the transmitter and of sequence number of the next expected
request packet at the receiver. The two sequence numbers have to be the same for

20

play request

Fill up request packet:

+ reg->ac = audio context

+ reg->startTime = start time

+ reg->nbytes = 0

+ reg->sampleType = u-law

+ reg->nchannels=1

+ reg->length = length of request packet

|| Send request packet 1
|| fakeASend(aud); ~—— TCPIP
. | Send data packet: ‘ UDP/IP
|| cell_delay(); |

"Wait’ for reply packet:
_fakeAReply (aud, (aReply *)&reply);

Ready for next play

Figure 14: AFPlaySampleswith modifications.

21

each invocation of AFPlaySamples; otherwise, the transmitter will recognize there
is sequence loss (loss of reply packet) and will try to resynchronize by adjusting the
sequence numbers. In redlity, the loss sequence problem seems to be very rare as
experienced during the course of using AudioFile. Infact, it has never occured.

Another time dependency feature of AudioFile, the specification of playout
time, was also removed. The modifications effectively enable the transmitter not
to worry about the playout time for each play packet. Besides, the transmitter no
longer needs to carry out the anti-jitter mechanism as done before. Instead, the
scheduling of playout time is now the responsibility of the receiver. Section 5.4.2
will present detail of modifying the DDA section of AudioFileto accommodate this
capability.

5.3 Client Modifications:

Besidesthe protocol and dependency modificationsto AudioFile’ stransmitter (client
apass), additional modifications to accommodate the capabilities shown in Figure
9 include a recorder/dispatcher model. Basically, the recorder/dispatcher model is
embedded into the transmitter. Its capabilities include capturing the audio data,
sending captured data to a pipe (FIFO), forming ATM-sized (49 bytes for now)
packets, introducing packet loss and delay variations to cells transmitted, and fi-
nally, dispatching (transmitting) the packets over the network. The detail of the
recorder/dispatcher model will be provided in section 6.1.

5.4 Server Modifications:
5.4.1 DIA modifications:

Aspresented earlier, the DIA section of AudioFileisresponsiblefor managing client
connections, dispatching client requests, sending replies and events to clients, and
executing the main processing loop. When arequest arrives, the dispatcher looks at
the request packet and determines the requested service via alookup to the service
table. The result of thislookup is the handler name for that service. The dispatcher
then calls that procedure to process the request. Figure 15 shows the operations of
the dispatcher, which match closely to the behavior of the Dispatch() procedure of
AudioFile.

Notethe DDA section of thefigure. Depending on the request’s specification
of audio device (each request packet carries the particular device information), the
server will call a device-dependent handler.

22

client request?
audio device request?
task request?
WaitFor Something();

yes

‘ run any pending tasks (update) ‘

l

input events (from audio devices). ‘

Table of Request Handler Procedures
/‘—% : :
no ? : :

e

read request packet on TCP
(which contains audio data for play request):

ReadRequestFromClient();
MAJORORP = requestV ector[request. REQUES TYPE] |------- >
A .
[SRR
I
$:
proccess handler: v:

(* client)->requestVector[MAJOROP])(client)

Figure 15: Operations of original AudioFile's dispatcher.

23

To add the UDP/IP functionalitiesto AudioFile, modifications must be done
just after reading the request packet and before processing the handler procedure.
So after reading the request packet with the ReadRequestFromClient procedure,
the request type is known. Also, since the request->nbytes field of the request
packet is set to zero, as noted in section 4.1 above, the dispatcher so far has not
received any transmitter’s audio datat. Thus, inserting the UDP/IP procedures for
reading audio data from the UDP port will guarantee that the dispatcher will also
get data, besides the request type. Note the advantage of the modification approach
taken: other operations of AudioFile such as processing events and tasks are still
unaffected. Thus, the modificationsto the DIA section are completely transparent to
AudioFile. Taking advantage of this transparency, new functionalities were added
for user-specific needs without affecting its basic operations. Indeed, the insertion
point chosen is perfect for providing expansion room for the software devel opment
part of the project. Software development for the proposed solutionsis presented in
detail in section 6.

5.4.2 DDA Modifications:

Modifications to DDA are required to remove the time dependency between the
transmitter (client) and the receiver (server). The two DDA's procedures that
were modified are codecPlay and codecRecord. The procedure codecPlay is the
AudioFile-deviceinterface for playing audio samples to the audio device; wheresas,
the codecRecord is the AudioFile-audio device interface for recording audio sam-
plesfrom the audio device. Even though DDA has axp and | ofi as separate sections,
thetwo sets of source code sharealot of common features. Infact, since AudioFile's
lofi section was implemented before the axp section, lofi’s functionalities, besides
having those capabilities to support the DECaudio device, contain al of the axp
section’s functionalities. The codecPlay and the codecRecord of the two sections
are very much the same.

Modifications to codecPlay:

Before going into detail, it would be helpful to understand how received
samples are buffered before they are handed to the hardware buffer. Figure 16
shows the data sample flow between the server, codecPlay, and the hardware buffer
for aplay request.

With a reference to the figure, after samples are received by the server,
they are stored into the server’s buffer. The location of the first samples (out of
nbytes) will be determined by start_time which was extracted from the request’s
packet. Subsequent samples are stored in consecutive locations, one after another.
The server next calls the protocol handler, in this case codecPlay, to process the

24

Py, Server

Wies o
(7 3l e
eq"&q store captured

datainto server's
buffer

buffer_pointer

nbytes
_—

start_time
—

codecPlay()

+ Copy nbytes (or less) to hardware buffer
* Update the server buffer

start_time

Hardware

nbytes

Figure 16: Data sample flow between server and hardware buffer.

25

requested service (playback). Passed to the codecPlay handler are the pointer
pointing to the server buffer, the start time, and the number of bytes requested for
playback. The codecPlay then does the actual copying of samples from the server
buffer to the hardware buffer. Note, however, that not all of the requested nbytes
will be moved to the hardware buffer. Theloss of datais due to the time adjustment
mechanism implemented in AudioFile's server. The mechanism ensures that only
sampl es scheduled (requested) in the near future will be played out. The near future
must be beyond updatetime, and within the server’sbuffer. Thosefallinginthe past,
in which case the requested start time is lagging behind the current server’s time,
will be silently discarded. This mechanism was already illustrated and discussed
in Input and Ouput Models Section. As mentioned before, the update process is
independent of the server’s operation and is periodically carried out (every 32ms,
or 250 mu-law samples). It is used to ensure that the server gets the latest samples
from the A/D, and that the server passes playback samples to the D/A if there are
requested play samples from the transmitter.

The operations of the original codecPlay handler are shown in Figure 17.
With reference to the figure, play requests samples (delta) that fall in the past will
be silently discarded, as done by the dotted box. The time index, play_time, which
corresponds to the first sample’s location in the server’s buffer, is also advanced by
delta amount.

M odificationsto the codecPlay handler involve establishing atimereference
inside the handler and are only within the dotted box. Thistimeindex is memorized
by declaring it as static variableinside the handler. The timeindex will be advanced
for every invocation of codecPlay by an amount of nbytes of samples or more,
depending onwhether thetimeindex isfalling behind thedevice scurrent time. With
thislocal time reference, even though play request packets sent from transmitter do
not contain timeinformation, the receiver always knows where to store the sasmples
in the server’s buffer. However, unlike before, the modified version of the handler
does not discard data; thus, as awhole, packet lossisonly caused by the transmitter
or by the network (very rare). It should be noted here that the new time index kept
by the receiver does nothing but to ensure received samples are always buffered and
will be played out. Thus, a no-loss-of-data condition is guaranteed at the receiver,
to meet the proposed solutions specifications. The modfications also ensure thefirst
sample will be delayed by a variable blind delay amount. This is done by adding
the blind delay amount to the play-out time of the first sample.

Modifications to codecRecord:

The modifications to the codecRecord handler are similar to those of codec-
Play handler. The time dependency is removed inside the codecRecord handler by
establishing alocal time referencejust asin the codecPlay handler. Thistimeindex

26

play request
(data_ptr, play_time, nbytes, server_buffer)

Absolute Time Reference
Adjustment

is

play_time>

no
% delta= current_time - play_time;

? 2 :

server’s current_time

+ discard part or al play data until

yes current time:

‘ data _ptr = data_ptr + delta;
nbytes = nbytes - delta;

+update play_time (location of data_ptr in server’s buffer):
play_time=play_time + delta;

+update play_time again:
udelta = device's TimeNextUpdate - play_time;
play_time= play_time + udelta;

is
play_time within the
update interval

?

(write_through)

+copy udelta samples to server’s buffer:

i

no (write_server) +compute remaining samples to be copied:

data_ptr = data_ptr - udelta;
nbytes = nbytes - udelta;

remaining samples yes +copy remaining nbytesto server’s

to be copied: ~——= buffer with:

nbytes>0 first sample’s location = play_time;
?
no

ready for next invocation

Figure 17: Operations of codecPlay handler in the original AudioFile.

27

2-byte UDP packet header

8 hits 4bits 4 bits

4 cLp | SN SNP 47-byte mu-law data payload

1 bit

5-byte ATM cell header

Figure 18: Format of the ATM-emulated UDP packet used.

is advanced for every invocation by an amount of nbytes of samples as requested
from a client (transmitter). This results in a continuous recording of samples from
the A/D, for recording update is done periodically as discussed before. With the
origina codecRecord handler, continuous recording is not supported for it causes
some of the recorded samples to be lost (silence replacement) if the transmitter’s
request fals in the past (record slip). With the modified handler, the server knows
where to continue taking the next chunk of requested samples from the server’s
record buffer, without needing the transmitter’s request time information. Because
of the continuous advancement of the time index, continuous samples from the
server’srecord buffer will be returned to the requester, without any data | oss.

6 Software Developmentsfor DSO M SB/L SB Scheme:

6.1 Phasel: Emulation of ATM cellsusing UDP packets:

In this phase of development, each packet transmitted over the ATM network is
a UDP packet of 49 bytes (excluding the UDP overhead), which includes the a
2-byte header for sequencing and loss priority purpose, and the 47-byte payload of
mu-law data. Figure 18 shows the format of the UDP packet, emulating the ATM
cell format. Asshown, not all bytes of the ATM cell header are used; only the CLP
(Cell Loss Priority) is needed. The CLP bit information is used at the transmitter
to indicate the MSB or the LSB payload; whereas, at the receiver, it will help the
receiver to recognize the type of the packet (MSB/LSB) received. It is significant
information because it directly affects the way the receiver carries out the proposed
replacement algorithm. The HEC (Header Error Check) field of the ATM cell is
not used here because it is assumed that the transmission facility has a very low bit
error rate.

28

The SN (Sequence Number) and SNP (Sequence Number Protect) fields
emulate AAL-1 header information. They are embedded in the payload portion of
the UDP packet. According to the proposed solutions, the SNP field is not yet used
for it is assumed that there is no error in the SN field. Again, thisis a reasonable
assumption due to fiber optic transmission in the ATM backbone. The SN field
will be assigned at the transmitter, having values from 0 to 7. MSB packets always
have even SN; whereas, L SB aways have odd SN. Thus, a check isaways made to
ensure a MSB packet always having an even SN and a LSB packet aways having
an odd SN, beforeit is sent out to the network .

From the user’s point of view, phase | presents a transparent emulation of
transmission of ATM cells. This emulation includes:

e Forming MSB and L SB buffers from the mu-law audio stream.

e From each buffer, forming MSB and LSB payload portions of an ATM cell
(47 bytes).

e For each type of payload, appending a 2-byte header and a 1-byte SN/SNP
with the CLP bit and the SN field being assigned by the transmitter.

At thereceiver, the reverse process in which MSB and L SB cells, after their
headers are stripped off and examined, are recombined to form back the mu-law
samples. The reconstructed samples are then fed to the D/A for playback.

6.1.1 Transmitter:

Figure 19 shows the implementation of the transmitter. Even though there
are softwarelimitations, the transmitter ismodel ed as closely to the model proposed
in[2] as possible. As shown, the transmitter actually consists of two independent
modules: the Recorder and the Dispatcher. They are independent in the sense that
one does not have to wait for the other for a particular processing operation. In
particular, the Recorder performs continous recording, with 470 mu-law samples
(10 47-byte udp cells) for each request to its local server. Each recording request
is an atomic process because the server will not return the samples until they are
al recorded. The Recorder then places the samples on the FIFO which can be
readily read by the Dispatcher. Upon placing the data on the queue, the Recorder
immediately starts another recording. In reality, however, there will be some small
finite delays between recording requests because the server has to process other
tasks, such as play requests, update tasks. However, because of the periodic update
operations of the server, data loss due to gaps between recording requests is very

29

send request packet
(TCPIIP)

l—®

request server for recording nbytes (10x47)

Pipe (FIFO)

read 94 samples
from Pipe.

$

i | form 47-byte MSB payload
Dispatcher 1 and 47-byte LSB payload.
,, ~
=
create header for MSB cell: Delay Variation Module
+assign CLP=1;
+ assign current SN (SN is always even); i
+assign SNP=0; [Cell Discard Module
T oo

discard cell

?

ly%

+ header not generated;
+ cell not sent
+ SN = SN+1; (always)

create header for LSB cell:
+assign CLP=0;
+assign current SN (SN is always odd);
+ assign SNP=0;

1

+ append header to

47-byte MSB/L SB payload;
+SN=SN+1;

|

send cell;
(UDP/IP)

(ready for next send request)

Figure 19: Transmitter’simplementation.

30

small and not audible. To implement the independence between the Recorder and
the Dispatcher, Unix process forking and pipe operations were used. Thus, in
effect, the Recorder and the Dispatcher are completely separate processes, sharing
acommon data pipe.

The Dispatcher first checksthe data pipeto seeif thereisdatato be sent; only
when there is data, the Dispatcher will read the data from the pipe, packetize the
data, and then transmit the packets. With reference to the figure, upon receiving a
send request (play request fromits main loop), the Dispatcher then sends the request
packet over TCP/IP channel. Next, it will read 94 samples (2 47-byte udp packets)
from the pipe previously placed by the Recorder. The 94 samples obtained are
then fed into the packetizer module (_ATM CellPacketizer) to produce two classes
of payload: the MSB payload and the LSB payload. Following this operation, the
MSB payload is processed first, then the LSB payload; that is, pairs of MSB and
LSB cellsare always sent if thereis no cell loss.

For each payload type, an amount of cell delay variation is calculated in
micro-second resolution (x micro-seconds). A uniform distribution is used where
the lower and the upper bounds are user-assigned and can be changed even during a
running process. This enables the user to easily carry out experiments and observe
voice quality under different delay variation conditions. To introduce randomness,
thedrop_OR_ndrop procedure uses the random(), and gettimeofday() functions. The
gettimeofday() was used to get the seed number to be used in the random() function.
Obviously, the seed number will be very random.

To delay an amount of real-time x micro-seconds, the select() system call
is used. With select(), timing is reasonably accurate because it interacts directly
with the kernel. After x micro-seconds of delay, the Dispatcher then continues
operating by considering whether or not to drop the current payload type with
the cell loss probability given. Like the delay variation parameter, the cell loss
probability parameters (MSB and LSB cell loss probabilities) are user assigned and
can be altered during a running session of the program without having to actually
kill and restart the running process. If the payload is declared to be dropped, by
the drop_OR_ndrop() procedure, there is no more processing required. In this case,
no header is generated, the payload is dropped, and the SN (sequence number)
variable is incremented by 1. By aways incrementing the SN by 1 even if there
is no actual transmission of a cell, the SN of the next cell to be transmitted (or
dropped) will be ensured to be correctly assigned. As mentioned above, because
cells are transmitted in pairs, i.e., a MSB cell followed by a LSB cell, an error in
SN assignment will be dectected if the cell to be transmitted isa MSB cell and the
current value of SN is odd, or if the cell isaLSB cell and the current value of SN
is even. The implementation of the transmitter prevents this incorrect assignment
from happening.

31

On the other hand, when the payload is marked as a no-dropped payload,
its 2-byte header will be generated and appended to the payload. If the payload is
of MSB class, its header’s CLP bit is set to 0, and to 1 for the L SB-class payload.
The header’s SN field is then assigned the SN’s current value. The whole cell is
then sent over the network over the UDP/IP channel. Regardless of the class of
the payload to be transmitted, the SN variable is always incremented by 1 once a
cell issent. A check then is made to see if apair of MSB and LSB cells has been
completely sent. If it is, another pipe read isinitiated to get the next 94 samples.
When all 470 samples are sent, the Dispatcher is released and ready for the next
send request from the main module.

6.1.2 Recaver:

Figure 20, 21 and 22 show the complete diagram of the receiver. Again,
thereceiver, like the transmitter, isimplemented such that its operations are closely
matched to the operations of the proposed receiver model [2].

With areferenceto Figure 20, after receiving the request packet, the receiver
will identify the the type of the requested operation, viathe request packet’s request
type, requestBuffer->requestType. If the request typeis other than 7 (play request),
the receiver services the request through its normal protocol handlers, bypassing
the developed procedures. When the request is a play request, the request packet’s
nbytes field is checked. If the field’s value is zero, the play request is for playing
UDP packets (MSB/LSB cells); otherwise, the play request is for playing dialing
samples (DTMF samples). Asfar asthereceiver isconcerned, thetwo play requests
are distinguishable only by the value of the nbytes field. It should be noted that
the dialing samples are sent over the TCP/IP channel as part of the request packet.
These samplesrepresent dialing digitsinthe DTMF (Dual Tone Multiple Frequency)
format and thus need to be reliably protected.

Once regconizing that the play request is for playing UDP samples (nbytes
field iszero), the receiver then starts anticipating reading the 10 (5 MSB/L SB pairs)
UDP cells. Depending on the conditions of the arriving cells, the receiver will
perform case-specific operations. There are 10 known cases (round-edged boxes
in the three figures) to the receiver. Basically, these cases are actually those of the
proposed solutions [2]; thus, their operations need no further explanations.

6.1.3 Telephone Access Capability:
In this section, telephone access capability, via AudioFile, is presented.
As presented earlier sections, phone dialing is supported via the DECaudio audio

hardware. The DECaudio has a host-to-jack interface to support software dialing
from host to any phone viathe phone jack connected. As supplied with the original

32

request packet (TCP)
MAJOROP=(aReq *)client->requestBuffer->requestType;

carry out normal operations; ‘—\

ready for next request

MAJOROP

yes (play request)

reg->nbytes

’ process dialing samples; ‘

?

Cells Read
=10
2

D ready for next play request

\bno

Read_CdllS();

starvation
ocurrs

ﬁ[play previous cell (case0);]7

no
MOS;.B LSB :

H] Previous Cell = LSB;
LSB

MSB
’ Previous_Cell = MSB; ‘

|

) ©)

Figure 20: Receiver’s implementation, part 1.

33

@

very first yes -
MSB cell apply blind delay;

yes MSB_MSB

“

play previous cell, increment ESN
and ASN until matched (case2);

!

‘ Previous_Cell = MSB; ‘

% Read_Cells();

| Previous Cell =MSB; | no LB no %:;vasté?n
| ? ?

MSB-MSB case, so combine J yes

first MSB with LSB of 1111, and ‘ Previous Cell = LSB: ‘ starvation occurs while waiting
and play out (case6); — for LSB cell;

combine received MSB with
is 1111 and play out (case?);
SN = (ESN+1)

SN != (ESN+1)
and
SN 1= (ASN+1)

‘ Previous_Cell = MSB;
no

MSB-LSB pair is

received (caseb);

normal case when a discard LSB and combine
MSB with 1111, and play out (cased);

Starvation = 0;

®

Figure 21: Receiver’s implementation, part 2.

(©)

(MSB_MSB=1) and
(Previous_Cell = MSB

(First_Cell=0) and no

Previous_Cell = LSB)

‘ IncrementESN_ASN();‘ yes
yes
LS8 call isTanored unti MSB islost, so play
S Isignored unfi previous cell (Case_LostMSB).
thefirst MSB cell arrives (case9);

|

‘ Previous_Cell = MSB; ‘

i

‘ MSB_MSB = 0; ‘
l SN = (ESN+1) and SN = (ESN+1) or no
SN = (ASN=1) SN = (ASN=1)
@ 5 2
yes

yes

discard LSB cell, and
4' combine read MSB with 1111
and play out (cased);

normal case when apair
of MSB-L SB received (case5);

‘ MSB_MSB = 0; ‘

$

H Previous_Cell = LSB; F
I

‘ Starvation = 0; ‘

|

®

Figure 22: Receiver’s implementation, part 3.

35

Local Host Remote Host

e
— Public Switch
Magic ATM 1 —_—
\ Network / n / Telephone Network
Otto board Otto board \ Phone Jack

Handset TURBOChannel

— DECaudio

Figure 23: Modified configuration for voice over ATM network.

AudioFile, phonedialing is supported, but is a stand-alone operation and is limited.
Itislimited in a sense that it only supports “loca” dialing, i.e., the phone jack has
to be connected to the host which performs the software dialing.

To suit the proposed model, “remote”’ dialing capability had to be imple-
mented. With “remote” dialing, the dialing host does not need to be physically
connected with the phone jack; instead, it can be any host which has internet access
to the host which is physically connected with the phone jack. Figure 23 shows
the configuration. It should be noted that this configuration is different from the
proposed configuration shown in Figure 1. With the new configuration, not only is
less interface hardware needed, but also remote dialing is supported. The feature
of “remote” dialing presents to the user a real convenience when he or she carries
out experiments to test voice over the ATM. In fact, as the phone dialing and the
UDP transport are incorporated, users can just sit at any Alpha host, “remote” dial
a phone, and then carry the conversation over the ATM network, via the handset.
During the conversation, cell loss and cell delay variation can be atered to vary the
voice quality.

To combine the phone dialing capability and the UDP transport feature,
rdial isimplemented. Its operationis shownin Figure 24. Some of the application’s
principles are borrowed from the aphone client application of AudioFile. But it is
a newly developed application in the sense that it incorporates the phone dialing
operation with all the developed procedures. As a result, the application presents
to the user areal-timetool for conveniently testing voice over ATM network. With
reference to the figure, it should be noted that the transport of dialing samples
(dialing digits) is over the TCP/IP channel, using the AFPlaySamples procedure of
the original AudioFile. The samples are first converted to the DTMF format before
they are sent over the remote host, inside AFPlaySamples.

36

Parse commnd line to get remote server, phone number|

¢

Create Unix channel.
Create UDP/IP channel.
Create TCP/IP channel.
Establish Unix connection from adial to local server.
Establish TCP connection from adial to remote server.

Establish UDP connection from adial to remote server.

$

Create achild process of adial (childl).
Child1 remotely logins to remote host.
Child1 remotely runs apass from server to local server.

¢

Parent process (adial) waits for child process
(child1) to finish.

Childlis
finished
?

no

Make remote host’ s phone off-hook.
Remote Dial the remote host's phone.
Wait x (3) seconds for dialing to finish.

Recorder/Dispatcher module.-

yes

Make remote host’ s phone again on-hook.
Close all connections.
Kill al running processes.

Figure 24: Flow diagram of rdial application.

37

6.2 Phasell: Conversion From UDP To AAL1:

Work has been carried out to modify the AN2 device driver so it supports AAL1
format instead of the current AALS format. As of now, AAL1 is already available
for use, aong with AALS format. To have the developed demonstration system
support AAL 1, modificationswill berequired both at thetransmitter and thereceiver.
It is planned that the control information of AudioFile will be transported over a
AAL5 VC (virtua circuit), while the voice data will be transported over a AAL1
VC. To convert from UDP/IP to AAL1, anywhere in the demonstration system
that uses the UDP/IP will be replaced by the AAL1 system calls. Because of the
modular implementation of the system, it is anticipated that modifications will not
be difficult.

7 Graphical User Interfaces.

To ease the demonstration process, graphical user interfaces (GUI) were imple-
mented. Tcl/Tk [14] scripts were used due to its easy-to-implement but effective
feature, given the time constraint. The GUIs allow the users avery convenient tool
of running the demonstration application without much difficulty, effectively hiding
away al the complexity of the APIs beneath. The following discussions will be
about the two GUIs implemented: the Alpha-Alpha, and the Alpha-DECaudio.

7.1 Alpha-Alpha GUI:

The Alpha-AlphaGUI implemented isshownin Figure 25. The Alpha-AlphaGUI’s
purposeisto alow the users (local and remote) to talk over the existing Ethernet or
ATM network, through the handsets attached to the hosts. Its principle of operations
is similar to that of talk, a popular and simple communications application found
on most Unix workstations. As with talk, the remote user needs to have a server,
voice-serv aready run, listening for a call request. The user at the local host can
then run an Alpha-Alpha GUI, voice-cw.local, which will have its Host Name field
filled with name of some remote host. A pre-set list of values for Host Name is
supplied with the GUI. The pre-set values can be found by activating the extension
buttons (buttons with ...). The list can be atered easily to fit the user’s personal
configuration. Instructions for adding/deleting pre-set values can be found in the
README file. The user can aso fill in the fields manually. After specifying the
name of the remote host to where the connection will be made, the user can pressthe
Talk button to initiate a request to the remote host. The listening server, voice-serv,
receives arequest packet, and will pop up asmall window and will wait for theinput

38

Exit He g
Gain: Comnecting:
Hesl Mame: |maochiy—atm.ukans magcnatl
12 18
Tail Hanmgup
i 14
8 1
Condliions:
&
[
5 2 Msb Cell Loss Ratle; |1a—4 ,
q q: —
Lsb Cedl Loss Aatio: | 1e-8 —
E =6
o 1010 | Min Added Dwlay [usec): 1
In Gain Out Gain Max Added Delay (usec): 100

Figure 25: Alpha-Alpha GUI.

from the user. If the user presses the Accept button, the server will pop up a GUI
exactly like the one shown in Figure 25. From the GUI, the user can then initiate
the connection to the caller by only pressing the Talk button, without filling out the
Host Name field. On the other hand, if the user selects the Reject button, there will
be no GUI displayed. Whether the user accepts or rejects the connection request,
the server will always send back the Reply packet to the caller. Upon receiving the
Reply packet fromthe server, the caller will either have the connection automatically
set up, or the refusal message displayed on his’her screen.

Once the connection is established betwen two users, voice quality can
be controlled by changing the condition parameters:. MSB Loss Ratio, LSB Loss
Ratio, Min Added Delay, and Max Added Delay fields. Like the hostname field,
the condition fields can be either filled in manually or chosen from the list of the
pre-set values. Thelist can aso be altered just as that of the Host Name field. The
loss rates are limited between 0 and 1; whereas, the added delays are in units of
micro-seconds. The Min Added Delay and the Max Added Delay specify the low
and high limits of the uniform distributions, respectively. By varying the condition
fields, the user can easily observe and evaluate the voice quality over the ATM
network. To change input/output gains, the user can change the gain scale as shown
in the main window.

Also shown in Figure 25 is the Hangup button which enables the user to
shut down the one-way connection from him/her to the remote user. To have the

39

Exit Help
Gain: Dialing:
Host Mame: |mauchiy-atm.ukars.magicnat] ..
b 18 Phane Number: §7762 H
10 14
Crial Hangup
a8 10 . i
g
L
2 Conditions:
4 =2
Msb Cedl Loss Ratie: |te-0 -
2 &
0 -10 -10 I Leb Cell Logx Ratie: 1e-8 =
In Gain Qut Gain Min Added Deley [Esec): 0
Max Added Delay [wsed); 100

Figure 26: Alpha-DECaudio GUI.

whol etwo-way connection closed, the remote user al so needsto activate the Hangup
button. The Exit button will close down the GUI window. Instructions of how to
use the GUI can be found by using the Help button.

7.2 Alpha-DECaudio GUI:

Figure 26 shows the Alpha-DECaudio GUI implemented. It implementstherdial’s
operationsas described in 6.1. Its purposeisto allow the user to dial any telephone,
and conduct a full-duplex telephone conversation only via a handset attached to the
host. As shown, the GUI only differs from the Alpha-Alpha GUI by the Phone
Number field. The hostname specifies the name of the host which has the telephone
interface hardware, DECaudio. Basically, the user at the local host, after running
the voice-cw.phone to open up the Alpha- DECaudio GUI, can dia any telephone by
specifying the name of the remote host which has DECaudio attached to it, and the
phonenumber field. Pressing the Dial button will initiate the dialing service, during
which dialing tones can be heard via the handset. The DECaudio is the hardware
that is called to carry out the actual dialing. What happens is that the Alpha-
DECaudio GUI communicates with the server, Alofi, at the remote host which has
the DECaudio attached in requesting for adialing process. As already described in
earlier sections, Alofi hasthe ability tointeract directly with the DECaudio hardware

40

in generating dialing tones, along with capturing record samples and playing play
samples. The purpose of the condition fields isidentical to that of the Alpha-Alpha
GUI. Again, the input/output gains can be adjusted using the gain scales.

8 Problems associated with DECaudio’s phone inter-
face:

When purchasing DECaudio, we expected it to delivery avery good quality sinceit
isa commercial product of Digital Equipment Corporation (DEC). Unfortunately,
the telephone interface section of DECaudio has echo and noise problems which
DEC now acknowledges. We did not find out the problems until six months after it
was purchased due to the fact that we did not use it much during that time frame.
In fact, according the plan we proposed, we were involved mostly with software
development in implementing the proposed solutions during this early period. We
did not plan to implement software that has the phone functionalities during this
period. Therefore, we were unable to carry out test operations with the DECaudio
telephone interface, particularly in our intended configuration, which happens to
accentuate the echo problem. Furthermore, we found no acknowledgements of the
problems from DECaudio documentation.

In searching for solutionsto the echo problem, wetried to implement an echo
canceller both in the Alofi server (software) and in the DECaudio itself (DSP). In
moving the echo canceller from inside the Alofi server to inside the DECaudio, we
werevery hopeful that we could eliminatethe echos dueto thereductionin thereturn
delay; unfortunately, it seems that even with echo canceller being placed inside the
DECaudio hardware, it is unableto eliminate the echo. Several engineerswho were
involved in designing the DECaudio from DEC also believe the same. Ironically,
these engineers were aware of the echo problem even before we purchased the
DECaudio, but no re-design was ever attempted by DEC.

In an attempt to point out the nature of the echo and the noise problems,
the following discussion will be devoted first to the configurations (hardware and
software) of DECaudio’s telephone interface, then to the different approaches we
took in attempting to solve the problems.

8.1 Hardware Configuration:

Figure 27 [5] shows the detailed block diagram of the DECaudio Hardware.
The four major components are the DSP, the shared RAM, the codecs, and the DAA

41

Lo¥ | Modu/e & (MaidbyuHon Box

ra
Dig'tsl fiadin

- 155 Par
! Disskh Sslch

- [wrr | o= Liia Dul LAY
-.;.-:' oae | i Mesdphans LA
M — | T
~ .) CO0Ee = iy
- il
i fooe L 01
E i [T kel I T i Wi 1 (BaEal)
E | s i g Speaien ¥ (mondern)
-] E = Status| Bnalog Audla
= —_— - ug E .
= Ou i e
'l'-:-\,_-w,::'. 4 | . Lemg
275 aaa | |0

ey ¥ — el TR

SOH S
Telmphoay

i

Figure 27: Detailed Block Diagram Of The DECaudio Hardware.

(Data Access Arrangement). The DSP has the following functionalities:

e DSP56001 has 3 memory sections: on-chip X Data Memory (X data RAM,
and X data ROM where ROM contains pre-programed Mu-law and A-law
Expansion Tables), on-chip Y DataMemory (Y dataRAM, and Y data ROM
where ROM contains pre-programmed sine-wave table), and Program Mem-
ory (512-word by 24-bit RAM) which provides a method of developing code
efficiently. It also alows programs to be altered dynamically, allowing effi-
cient overlaying of DSP software algorithms.

o After power-on reset of the DSP, the bootstrap mode provides a convenient
way of loading the DSP56001 Program Memory with a program (in absolute
format).

e The Shared RAM is an off-chip 34Kx24 bit static RAM array, and is shared
by the DSP56001 and the host processor. Play and record samplesto and from
the codecO (telephone codec) are temporarily stored in this shared RAM.

Figure 28 [5] shows the details of the DAA. As will be discussed |ater, the
DAA's hybrid section (2-4 wire converter) is believed to cause the echos due to
impedance mismatches and/or poor design.

8.2 Software Configuration:

Codec0O & Codecl:

42

Tran o Bad i i
| Femsaje CODED) |—< 2a
e

e Liw
Paceae St Eaeveurias Carest
I'i-m.ll.'l.l.l;l:l.l Ll 1
l I (e Lre
L] !
CTHF |
Lt ian
OTHF Siaic -'—I
iy 1T i
Huick Swich Coavel
Aing Dat: ™

Figure 28: Detailed Block Diagram Of DECaudio’'s DAA, an analog telephone
interface.

| Programable Gains |

Minimum | Default | Maximum
GX 0db Odb 12db
GER -10db 0db 18db
GR -12db 0db 0db
STG -18db -18db 0db
GA 0db Odb 24db

Table 1: Programmable Registers

Telephone Rx. A
AN ’ , X GX
—0
n.c. B

DTMF
STG
Codec
MUX
Telephone Tx..
|| R f{e—o__ o= GER @) GR
LS2 T
Tone Tone
¥ Ring. Gen.
2nd
Tone
Ring.

Figure 29: Detailed Block Diagram Of DECaudio’s CodecO (Telephone Codec).

43

Mic In

GX

A
Handset Mic N ’ ,
Line In (E}———¢ B

DTMF

Handset Ear

STG

LS1

GER

Codec
MUX

f Ring.

2nd
Tone
Ring.

Figure 30: Detailed Block Diagram Of DECaudio’s Codecl (Handset Codec).

Table 1 [15] shows possible settings for the codecs. The detailed block
diagrams of the codes are shown in figures 29 and 30 [5]. Programmable gain
registersGX, GER, GR, and STG are each 16 bitsin length, and can be programmed
for infinite attenuation to break thesignal pathif desired. In particular, the coefficient
9008 (MSB=90, L SB=08) provides an attenuation of infinite on registers GR, GX,
and/or STG, when they are enabled. Two consecutive register locations correspond
to one gain coefficient. The LSB istransferred first to (or from) the microprocessor.

I
N\

GR

Tone
Gen.

It should be noted that the Codec MUX is on the host processor’s side.

8.3 Echo Problem & Attempted Approaches:

In trying to determine where the echos were coming from, a number of test experi-

ments were carried out which include:

e Carrying out the experiments as shown in figures 31 and 32. In both situa-
tions, we play samples captured from the handset to the DECaudio’s codecO
(telephone codec), while recording sampl es captured from codecO back to the
handset. As expected, with configuration as in Figure 31, the return echo
delay is significantly small; consequently, one could not hear any echo (but
noise still 1) at the handset. Actually, the echo is present, but the small delay
causesit to appear asincreased sidetone. In contrast, the configuration shown
in Figure 32 introduces a large return echo delay which evidently includesthe
network delay; consequently, onewill obviously hear the echos at the handset
side. It should be noted that, in both experiments, we did not observe any
echo and noise at the remote telephone side at al; in fact, the telephone side

isamazingly clean.

TURBOChannel

Public Switch
DECaudio A /\@

/ Telephone Network a4 Telephone

Phone Jack

Figure 31: Configuration with no echos observed.

Local Host Remote Host

i / crobo \

Public Switch

Telephone Network

Handset Return Echo Path

TURBOChannel

N/
S—

Telephone

Figure 32: Configuration with echos observed.

45

60PF

’7

200K

From transmit : AA A e O

input op-amp
200K TXO

+
390 ohm (measured)
(87K in Handbook)

(veer)

BAL

32K Transformer

-+ —
RXO }—<l> (veer)

137K 109K

LVAVA AN RXI

87PF

Figure 33: Transmit Driver/Receive Hybrid Section.

e Carefully examining the Alofi’s dda codes to make sure that there is no loop
back.

¢ Varying the sidetone, input and output gains to see if they have any effect on
the echos.

After carrying out these experiments, we strongly believe that the DAA's
hybrid circuit causes the echo problem. In particular, due to impedance mismatches
and/or poor design, samples played out to the hybrid section are reflected back.
Thus, when the Alofi server captures the recorded samples, the reflected samples
are also captured.

Attempted Approaches:

8.3.1 Addingacompensation network:

We considered adding more resistors to the DAA'’s hybrid circuit to have a
better impedance match. Figure 33 [16] shows the transmit driver/receiver hybrid
section. In [16], the register between TXO (Transmit Output) and BAL (Balance)
pins are specified at 87K; however, by using an ohmmeter, its actual value was
found to be only 390 ohm. As shown, the hybrid consists of an op-amp which sums
aportion of the TXO signal with the signal coming from RXI which is usually tied
to the external coupling transformer. The receive gain from RXI (Receive Input)
to the output of the hybrid is about 1.5 dB to make up for the typical insertion loss

46

of acoupling transformer. By design, the hybrid assumes that the TXO component
at RXI will be 6 dB lower than that at the TXO pin. However, dueto variationsin
the phone line impedances, the signal at RX1 varies in phase and amplitude from
theideal case. Asaresult of this, the TXO component is not completely cancelled
by the hybrid. To adjust the return loss of the hybrid, we tried to add an external
compensation network attached to the BAL pin (as supplied with DECaudio, the
BAL pin was left floating), as suggested by the Handbook. This did not help to
reduce the echos.

8.3.2 Implementing an echo canceller inside Alofi server:

An attempt was carried out to implement an echo canceller inside the Alofi
server. Figures 34, 35, and 36 show the echo buffers’ structures, the Alofi architec-
ture with Least-Mean-Square (LM S) algorithm embedded, and the flow diagram of
the Ims algorithm implemented, respectively. From Figure 34, as described earlier,
the Alofi server carries out the update process once every 250 samples (32ms).
At each instant of update process, a number of samples will be transfered from
the Alofi’s internal play buffer, aDev->playBuf, to the hardware play buffer for
a play operation, and a number of samples will be transfered from the hardware
record buffer back to the Alofi’s record buffer, aDev->recBuf. The echo buffers,
EchoPrivate->echoBuf, EchoPrivate->recBuf, and EchoPrivate->echoBlock, are
introduced to hold the play and record samples, which are used by the Ims echo
canceller.

Figure 35 shows how the Ims fits into the Alofi’s structure. The energy
detection is to make sure that adaptation of Ims coefficients only occurs when there
isno speech recorded; otherwise, the state of the echo canceller will quickly become
unstable.

In estimating the number of taps needed, a measurement of echo delays at
the Alofi’s server was done. It was found out that the delay varied significantly,
for each record/play operation. Figures 37 to 40 show four different instants of
the reflected signal recorded from the codecO for aflick. The x axis specifies the
strength of the signal (normalized to 1) while the y axis designates the number of
samples captured. The locations of the return echos were spotted by finding the
maximum-val ue pointswhich are shown on thefigures. Noticethe presence of noise
in the figures. In obtaining the figures, all four experiments were carried with the
same configuration. In particular, first of all, one flick was recorded into afile. The
Alofi server was then modified so that it reads thisinput file and plays to the codecO
of DECaudio. At start up, the Alofi also opens an output filefor holding the samples
recorded from codecO (Alofi’s update process will carry out arecord operation right
after aplay operation). The figures represent the data written by the Alofi server to
those output files. In this way, all four instants were guaranteed to have the same

a7

Echo Buffers. (circular)
struct { echoBuf[10x470];
echoBlock[1024]; (samesize as HW buffer, 1024)
recBuf[1024]

int echoPr; } *EchoPrivate;

Update process every 250 samples = 32ms

Write | T aDev->playBuf (server’s play buffer) PR — > HW’s play buffer

HW’ s record buffer

Red | | aDev->recBuf (server’'s record buffer) <

With LMS:
Update process every 250 samples = 32ms W HW’s play buffer
Write | 1 aDev->playBuf (server's play buffer) l
! EchoPrivate->echoBuf[
L echoPtr % 4700]
Read | | aDev->recBuf (server'srecord buffer) | < —=——— HW’srecord buffer
| O |
) | L
copy | . — .
! EchoPrivate->recBuf \ (inside Alofi)
1 LMS
& !
EchoPrivate->echoBuf _— > EchoPrivate->echoBlock /
|
1
|
Alofi Server Side I Hardware Side

Figure 34: Echo buffers' structures and sample collection process.

48

EchoPrivate->recBuf

,,,,,,,, Server (Alofi): | DECaudio |<—=
aDev->playBuf 5 -~
Py L AID
EchoPrivate->echoBlock
1 2 :
Energy = o X > [X(n)]
Energy
< yes
Silence level (-50.0 db) adapt
? :
A 3
"""""""""""""""" no Energy detection
L MS freeze adaptation
7" AN

e(n)

‘ Copy to aDev->recBuf ‘

Figure 35: Alofi with echo cancellation embedded.

49

EchoPrivate->echoBlock EchoPrivate->recBuf stepsize gdb offset nweights
| B B
static wi], i = 0..nweights where w[0] = no-delayed.
center_delay = nweights >> 1; (5)
Power_Reduction (EchoPrivate->echoBlock)
Store last samples (nweights) ¢
of recBuf to past_recBuf_samples;
no
Store last samples (center_delay) i < sizeof (recBuf)
of echoBlock to past_echoBlock_samples;
! yes
:
no . :
L i < center_delay j < nweights
2 ?
yes yes

z = AF_cvt_u2f { past_recBuf_samples[2* center_delay - i]};

z = AF_cvt_u2f { echoBlock[i-center_delay]}; ‘

no

(i + offset) <j
?

‘ y =y + AF_cvt_u2f { past_echoBlock_samples/nweights-j] }* w[j];

y =y + AF_cvt_u2f { echoBlockli + offset -j] }* w[j];

j <= nweights
?

no

adapt weights:
w(j] = w[j] + 2*stepsize * error *

AF_cvt_u2f { echoBlock[i+offset - j]};

!
i

Compress back to u-law and store:
ulaw[0] = AF_comp_u [error];
ulaw -> recBuf[i];

Figure 36: Flow operation of LM S agorithm implemented.

50

0uDE
i w 0030 ol 35105

BuDd -

G0z

Figure 37: Echo recorded from aflick at timet1.

illic)

max = 00458 a8 152606

Rl

Figure 38: Echo recorded from aflick at timet2.

51

{108

AN - (L0E30 Al FooE

agzf

-0.02 -
-0.04 "
—U-:IB_J | 2 a 4 5 I; ¥ a8 IB _II:]
x10
Figure 39: Echo recorded from aflick at timet3.
0.

0.0 9

(.05

Figure 40: Echo recorded from aflick at time t4.

52

experimental configurations. As can be seen, the variation is significantly large,
specially between Figure 37 and Figure 38 (36105 - 35298 = 807 samples). Given
thislarge variation, an echo canceller with a number of taps of at least 800 samples
isrequired. Taking into the consideration that the Alofi server needsto carry out the
update process once every 250 samples, the echo canceller definitely will not work.
Evenif the Alofi server’supdate period isincreased (aswe actually did try), we still
experience the problem of adapting to that large variation.

8.3.3 Implementing an echo canceller insidethe DSP:

To reduce the return echo delay, we attempted to move the echo canceller
closer to the DAA's hybrid circuit. An echo canceller written in assembly by DEC's
CRL was embedded in the ukernel code of the DSP, main.lod. We purchased the
Motorola’'s DSP Development Software that contains an assembler and a linker.
The assembly code is first assembled by the assembler which translates the source
statementsinto rel ocatable object files (.CLN). These object files are then processed
by the DSP linker to produce absolute executable file (.CLD). Finally, the absolute
executable files are converted into absolute .LOD files before they can be down-
loaded into the DSP.

At start-up time, server initilizes hardware (codecs, RAM, ROM, DSP6001),
and loads the precompiled absolute .lod file (main.lod) which contains the echo
cancellation code into the DSP's RAM section. For each sample played to codecO,
the DSP applies the L east-Mean-Squared (LM S) algorithm to the sample. It should
be noted that the number of taps implemented in the echo cancellation code is set
at 248 which is the maximum number of taps that can be implemented on the DSP
chip; otherwise, if it is greater than 248, mixing of X and Y data will occur.

Previous attempts at echo cancellation by DEC engineers had not been
particularly successful. In our configuration, the echo may be returning to the DSP
inlessthan one sampletimewhich would be problematic. We eventually abandoned
this attempt.

8.4 NoiseProblem & Attempted Approaches:
Attempted Approaches:

We also experienced the noise problem from the DECaudio’s phone inter-
face. Severa experiments were done in attempt to fix the noise problem. They
include:

e Measuring the noise level around DECaudio’s DAA hybrid section, using an
oscilloscope. The noise level was found quite high.

53

e Shielding the whole DECaudio with auminum in hope of reducing inter-
device noise. We found that when the DECaudio was not shielded, the noise
pattern, and thus level, varied with CPU load. Thiswould indicate CPU and
other devices (disks, power supply, to name a few) also play some role in
the noise problem. When it was shielded, there was still noise but the noise
pattern did not seem to vary much with the workstation load.

¢ Attempting to move the DECaudio card outside the Alpha and shielding it
with aluminum. But we later found out that it was not feasible to implement
due to the limitation of the bus length that could be extended outside the
workstation.

From the information we have gathered, we strongly believe that the noise
is coming from the DAA’'s hybrid section. To reduce the noise level, we can set
the gains (input/output) at the appropriate levels which vary on different hardware
used.

9 Conclusons & Areas For Future Work:

AudioFile is a very convenient software tool to perform audio processing. With
DECaudio, AudioFile provides essential telephone processing and high-quality au-
dio processing. As with the current version (version 3), AudioFile does not have
ISDN support even though DECaudio has the capability to interface with an ISDN
termina at the S interface point. We already checked the status of ISDN from
Digital Equipment Corporation near the end of last year just to find out that ISDN
is still under the phase of field testing. Furthermore, we also considered afield test
with DEC, using the Alpha's ISDN capability (there is an ISDN’s S interface port
on every DEC Alpha). Unfortunately, our local site does not have ISDN capability
to carry out afield test. As aresult, we have thought that it should be best to delay
any ISDN testing until adequate equipment is available.

On the other hand, we envision that future software devel opment on top of
AudioFileto support ISDN will provideusavery high quality of voice. Because the
Sinterfacebypassesthe DAA hybrid circuitry of DECaudio, theavailability of ISDN
on AudioFilewould mean complete elimination of current echo, and noise problems
observed in DECaudio. Modificationsto AudioFileto add ISDN capabilities would
require development of a new device driver under the DDA (Device Dependent
Audio) section.

As described earlier, DECaudio supports HiFi audio processing. With ap-
propriate HiFi sources connected to DECaudio, CD quality (44.1-KHz sampling)

54

audio can be captured and transmitted over the network. On the other hand, HiFi
samples received from the transmitter can be played out to the external HiFi device
connected to the DECaudio. All therecording and playback of HiFi samplesare via
stereo device 3 which hastwo channels (left and right). Withthese HiFi capabilities,
software development for CD-quality applications (broadcastings, for instance) on
DECaudio would be undoubtedly of great interest.

55

10 Acknowledgements:

| would like to especially thank Dr. Joseph Evans for his continous guiding and
support in understanding AudioFile’s reasonably complex structure. His insightful
suggestions of how to go about modifying AudioFile played asignificant rolein the
success of the implementation part of the project. | also owe special thanks to Dr.
David Petr for giving me the opportunity to work on the project. His continoushelp,
support and encouragement words, when | have questions and, especially, when
things seem rather slow, undoubtedly help me tremendously. | aso wish to thank
Dr. Victor Frost for his continous support when | need help on different topics.
| greatly appreciate the lending of his book on adaptive signal processing. | also
would like to thank Dr. Gary Minden for providing me a good start on working
with AudioFile. | also would like to express my sincere thanks to Dan DePardo for
his assistance in carrying out experiments, as we tried to solve the echo and noise
problems. Finally, | would liketo thank my co-workers, Mohammed Shanableh and
Mark Mischler, for their helpful suggestions on my part. | have found this project a
real experience and afirst building step in my engineering profession.

56

References

[1] David W. Petr, Mark Mischler, Mohammed Shanableh, Victor S. Frost, “Voice
Transport Via ATM Networks: Proposed System Solutions,” TISL Technical
Report TIS_-10610-01, July 1994.

[2] Mohammed Shanableh, Joseph B. Evans, David W. Petr, “Voice Transport Via
ATM Networks Using DSO Packetization” TIS. Technical Report TISL-10610-
02, July 1994.

[3] T1A1.6 Editoria Group, “Draft Technical Report On Voice Packetization,”
T1Y1 23 Speech Packetization Project, August 4 1993.

[4] Thomas M. Levergood, Andrew C. Payne, James Gettys, G. Winfield Treese,
and Lawrence C. Stewart, “Audiofile: A Network-Transparent System for Dis-
tributed Audio Applications,” Technical Report 93/8, Digital Equipment Cor-
poration, Cambridge Research Lab, 1993.

[5] Thomas M. Levergood, “ LoFi: A TURBOChannel audio module. CRL Tech-
nical Report 93/9,” Technical Report 93/8, Digital Equipment Corporation,
Cambridge Research Lab, 1993.

[6] W. A. Montgomery, “Techniques for Packet Voice Synchronization,” IEEE
Journal On Sdected Areas In Communications, vol. SAC-1, no. 6, December
1983, pp. 1022-1028.

[7] Steven McCanne, “An Echo Canceler For Workstation Audio,” EE225A Term
Project, Computer Science Division, University of California, Berkeley, May
3, 1993.

[8] DavidG. Gesserschmitt, “ Echo Cancellationin Speech and Data Transmission,”
|EEE Journal On Selected Areas In Communications, vol. SAC-2, no. 2, March
1984, pp. 283-297.

[9] J. W. Emling, and D. Mitchell, “The effects of Time Delay and Echoes on
Telephone Conversations,” Bell Syst. Tech. Journal, Nov. 1963, pp. 2869-2891.

[10] Nikil Jayant, “High Quality Networking of Audio-Visua Information,” IEEE
Communications Magazine, September 1993, pp. 84-95.

[11] Bernard Widrow, Samuel D. Stearns, “ Adaptive Signal Processing,” Prentice-
Hall Sgnal Processing Series, 1985.

[12] Martin De Prycker, “ Asynchronous Transfer Mode - Solution For Broadband
ISDN,” Ellis Horwood Series In Communications And Networking, 1993.

57

[13] W.Richard Stevens, “Unix Networking Programming,” Prentice Hall Software
Series, 1990.

[14] John K. Ousterhout, “Tcl and The Tk Toolkit,” Addison-Wesley Professional
Computing Series, 1994,

[15] Advanced Micro Devices, Sunnyvale, CA. AM79c30A Revision F Data Sheet
on the Digital Subscriber Controller Circuit, June 1992.

[16] Dalas Semiconductor Corp., Dallas, TX. Teleserving Design Handbook, March
1990.

[17] Motorolalnc. DSP56000/DSP56001 Digital Sgnal Processer User’s Manual,
revision. 2, 1990.

[18] Motorolalnc. DSP Development Software, 56000CL A SF-5.3-00398, 1994.

58

