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Chapter 1

Introduction

Analytical modeling of tra�c sources in a packet-switched communications net-

work is the basis of performance analysis and network design. Along with the

development of high speed networks, more types of tra�c are being applied to

the network, such as LAN interconnection, real time video tra�c and multimedia

tra�c with voice, data, image and video. Since the ultimate goal of a high speed

network is to support quality service for various types of tra�c, it is very im-

portant to understand the tra�c characteristics, especially their burstiness, and

provide accurate analytical models that well describe the properties. Only with a

thorough understanding of the tra�c and with appropriate models, is the study

of network performance and e�ective design of networks possible. For decades,

tra�c modeling has been an active research area.

Since the majority of real tra�c possesses correlated interarrival sequences

which have a major e�ect on queue performance, the major issue of tra�c model-

ing has been to build up models which best capture the correlation characteristics

of di�erent tra�c.

General tra�c modeling involves the following procedure:

(1) Set up a mathematical stochastic process as an approximation model for the

target tra�c based on its properties observed from the empirical data.
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(2) Determine the parameters of the model, such that it captures the tra�c prop-

erties best. This step usually involves many analytical techniques. The choice of

parameter values is also critical to the accuracy of the model.

(3) Use the model to analyze the network performance (queue length, queue delay,

loss probability etc.) analytically or by simulation.

(4) If possible, test the model by comparing the simulated result to the result

obtained from real tra�c and �nd out the limitations of the model.

Many tra�c models with di�erent approaches have been proposed in the lit-

erature. A detailed review of tra�c models is given in [1]. All the models can be

approximately grouped as follows.

Markovian Type Models: These include Markov chains and Markov Mod-

ulated Poisson Process (MMPP) [4]. The former can be either two-state Markov

chain or multiple two-state Markov chain. They have been used as simple models

for voice and on-o� type tra�c [3][4]. The multiple two-state Markov chain was

considered for the variable bit rate video tra�c model [4]. MMPPs have been used

to model multiple on-o� sources such as aggregated voice and data as well as the

superposed multimedia tra�c [5]. A typical feature for Markovian type models is

that they become analytically very involved as the number of states gets large.

Fluid Flow Models: These are simpler models than Markovian type models.

In a 
uid 
ow model, arrivals of discrete packets (or cells in an ATM network) are

treated as a continuous arrival of a liquid 
ow [6]. The arrivals of individual data

units are ignored. Because of this, the analytical simpli�cation of the performance

analysis is signi�cant. Its applications include aggregated on-o� source and vari-

able bit rate sources. It is an attractive and useful model for ATM network tra�c.

In an ATM high speed network, the individual data units are numerous relative

to a chosen time scale where the arrival rate changes can be observed. Therefore

the impact of individual arrivals on the network performance is negligible.

Models for variable bit rate video: These include Autoregressive Mov-
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ing Average models (ARMA) [7][8] and Transform-Expand-Sample (TES) models

[9][10]. The TES method can model a general autocorrelation function and simul-

taneously match the marginal distribution of the empirical counterpart. Models

for video tra�c are codec dependent.

Miscellaneous: These include chaotic map models and frequency domain

approaches. Chaotic maps address the problem from a fundamentally di�erent

perspective by using deterministic, nonlinear chaotic maps as tra�c models [11].

Frequency domain approaches are based on the fact that the correlation function

of an input tra�c stream which is a stationary random process, can be transformed

into a power spectral distribution function in the frequency domain [12][13]. Queue

response to input spectral properties can then be made by the spectral theory of

random processes. This approach can lead to e�ective dynamic link allocation

and is especially e�cient for multimedia tra�c.

These models di�er from one to another in terms of application. Each one

has some advantages and disadvantages. However, a common characteristic of

these models (except for the chaotic map and frequency domain method) is that

they are all short-range dependent, namely, the autocorrelation function of each

of these models decays exponentially as the lag increases.

A totally di�erent behavior of tra�c has been recently revealed at Bellcore

through rigorous statistical analysis of Ethernet LAN tra�c and video tra�c.

The packets per time unit process of the Ethernet tra�c was observed to be

statistically self-similar and the bytes per frame process of the video tra�c was

observed to be long-range dependent. Both tra�c are said to possess long-

range dependence. None of the above existing models can capture this long-

range dependenc.

Since this long-range dependence characterizes the burstiness of the tra�c,

the long-range dependent tra�c has signi�cant implication for the design, control

and analysis of high speed, cell-based networks. Thus, the modeling of this type
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of tra�c becomes necessary for the purpose of accurate network performance

evaluation.

In statistics, the importance of modeling long-range dependence has attracted

increasing attention in recent years [2], since long-range dependence has been ob-

served in many areas besides telecommunication tra�c. The Hurst e�ect that

occurred in geophysics and hydrology can be explained by slowly decaying cor-

relations. The record of the Nile river minima �ts the model of stationary pro-

cesses with correlations decaying hyperbolically which is the simplest model with

long memory. Long-range dependence is also discovered in astronomical data,

in agriculture, in chemistry, in biology, meteorology, linguistics, music, and in

environmental data [2] . In statistics, the �rst mathematical model with long-

range dependence was introduced by Mandelbrot in 1968. There is increasing

awareness in statistical science that long-range dependence instead of short-range

dependence exists in many data applications. If not taken into account, it can

completely invalidate statistical inference.

This paper is devoted to the modeling of long-range dependent telecommuni-

cation tra�c and a study of its characteristics. It consists of the following parts.

Chapter 2 covers background information about the measurement of the long-

range dependent and the self-similar tra�c, their mathematical de�nitions and

properties. Chapter 3 will present modeling issues of long-range dependent tra�c

and the approach that is used in this paper. Chapter 4 will discuss character-

istics of the ARIMA(0,d,0) process, which is a fundamental self-similar process

that possesses long-range dependence. Chapter 5 gives the algorithm of parame-

ter estimation for modeling and will show our complete modeling approach using

ARIMA(p,d,q) process based upon the ARIMA(0,d,0) process. Chapter 6 is about

video trace data modeling using the method presented in the previous chapters.

Chapter 7 will be a simulation performance study of the real video tra�c and the

simulated tra�c. Chapter 8 concludes this paper.

5



Chapter 2

Understanding of Long-Range

Dependent Tra�c

2.1 Measurement of Long-Range Dependent

Tra�c

Motivated by understanding the interconnections between LANs and the proposed

BISDN interconnection network, a high quality Ethernet tra�c measurement was

done at Bellcore [14][15]. Four sets of Ethernet local area network tra�c measure-

ments are considered. Each one represents between 20 and 40 consecutive hours

of Ethernet tra�c and each one consists of tens of millions of Ethernet packets.

The data were collected on di�erent intracompany LAN networks at di�erent pe-

riods in time over the course of approximately 4 years (August '89, October '89,

January '90, and February '92), corresponding to di�erent network loads. A high

quality Ethernet monitor was used to record the Ethernet packets without loss

(irrespective of the tra�c load). A high resolution timestamp was used to record

the arrival time of the end of the packet and packet length. The data showed that

the process of packet arrivals per time unit is statistically self-similar.
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As mentioned in chapter 1, currently available video tra�c models are coding

speci�c. The desire for �nding a more universal property inherent to variable bit

rate (VBR) video tra�c that is independent of scene and codec led to the discovery

of the long-range dependence in video tra�c [17]. Twenty di�erent video sequences

ranging from 15 seconds (a few hundred frames) to 2 hours (some 171,000 frames)

worth of actual video were measured [17]. They represent all di�erent kinds of

scenes and are recorded using at least 4 di�erent types of VBR video codecs. All

data sets are collected with high resolution timestamp. A common predominant

characteristic of all VBR video data is that at the frame level, the rate process

bytes/frame or cells/frame (where ATM cells contain the compressed and coded

information for the corresponding frame) presents long-range dependence with

di�erent degrees for di�erent data sets. The intensity of long-range dependence

depends on the activity level of the recorded scene, e.g. video conference and video

phone are low activity scenes, while video TV and full motion pictures are high

activity scenes. According to [17], video with high activity scenes are tested to

have higher degree of long-range dependence than video with low activity scenes.

Note however, long-range dependence and self-similar are not mathematically

exchangable terms. De�nitions of both concepts will be given in section 2.3.

The empirical data are tested to be long-range dependent or self-similar by

three statistical methods [15]: (1) analysis of the variances of the aggregated

processes X
(m), (2) time-domain analysis based on the R/S-statistics (rescaled

adjusted range), and (3) periodogram-based analysis in the frequency-domain.

The �rst method is an application of a key feature of long-range dependence

and leads to the so-called variance-time plots. It is used as a tool in this paper

for identifying the long-range dependence and a method of estimating the degree

of long-range dependence or self-similarity. It will be introduced in chapter 5.

Historically, the second method was used to provide an interpretation of an

empirical law that is known as Hurst's law or the Hurst e�ect [15]. Brie
y, for
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a given set of observations (Xk : k = 1; 2; :::; n) whose sample mean is X(n) and

sample variance S2(n), the R/S statistic is given by

R(n)=S(n) = 1=S(n)[max(0;W1;W2; :::Wn)�min(0;W1;W2; :::;Wn)];

with Wk = (X1 +X2 + � � �Xk)� kX(n); k = 1; 2; :::; n. It was found by Hurst

that many naturally occuring time series that possess long-range dependence ap-

pear to be well represented by the relation E[R(n)=S(n)] � cn
H
; as n ! 1;

with Hurst parameter H \typically" about 0.73, and c an arbitrary �nite positive

constant. It was also proved that if the observations Xk come from a short-range

dependent model, then E[R(n)=S(n)] � fn
0:5
; as n!1 with f an arbitrary

�nite positive constant. This discovery is referred to as the Hurst phenomenon.

How the Hurst parameter relates to the degree of the long-range dependence will

be given in section 2.3.

The periodogram-based analysis, on the other hand, is maximum likehood

type estimation [15]. It provides a more re�ned data analysis than variance-time

plots and R/S analysis, since it has the robustness of dealing with commonly

encountered problems for a given set of observations: (1) deviations from the

marginal Gaussianity, (2) deviations from the assumed model spectrum. Both

variance-time plots and R/S analysis are very useful tools for identifying self-

similarity in a heuristic manner except for that they are inadequate when a more

re�ned data analysis is required.
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2.2 Visual Understanding of Long-Range De-

pendence

Visually, an aggregated long-range dependent time series looks di�erent from an

aggregated time sequence of a conventional model. Figure 2-1 [14] provides a

pictorial proof of self-similarity of the Ethernet tra�c.

The left column plots correspond to Ethernet tra�c in packets per time unit

ranging from 100 seconds to 10 milliseconds. Each subsequent plot is obtained

from the previous one by increasing the time resolution by a factor of 10 and by

concentration on a randomly chosen subinterval (the darker shade). The right

column set of plots is the synthetic counterpart of the compound Poisson model.

Obviously, Ethernet tra�c plots seem to look very "similar" to one another from

all time scales in a distributional sense. In contrast, Poisson data has the plots

of packets per time unit which are indistinguishable from white noise after ag-

gregation over a few hundred milliseconds. The presence of "burstiness" across

an extremely wide range of time scales implies that there is no natural length of

a "burst". This time scale invariant or "self-similar" feature of Ethernet tra�c

makes it drastically di�erent from both conventional telephone tra�c and packet

tra�c models.

2.3 Mathematical De�nitions and Properties of

Self- Similar Process and Long-Range De-

pendence

Let X = (Xt : t = 0; 1; 2; :::) be a wide-sense stationary process, i.e., a process

with constant mean � = E[Xt], �nite variance �
2 = E[(Xt � �)2], and an auto-

correlation function r(k) = E[(Xt � �)(Xt+k � �)]=E[(Xt � �)2] (k = 0; 1; 2; :::)
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Figure 2-1: Pictorial proof of self-similarity: Ethernet tra�c (packets per time

unit) on 5 di�erent time scales (a)-(e). For comparison, synthetic tra�c from an

appropriately chosen compound Poisson model on the same 5 di�erent time scales

(a1)-(e1) [1].
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that depends only on k. Assume that X has an autocorrelation function which

exhibits long-range dependence with the form,

r(k) � k
��
L1(k); as k !1 (2.1)

where 0 < � < 1 and L1 is slowly varying at in�nity, i.e.,

limt!1 L1(tx)=L1(t) = 1, for all x > 0 (examples of such slowly varying func-

tions are L1(t) =const, L1(t) = log(t)). For each m = 1; 2; 3; :::; let X
(m) =

(X
(m)
k

: k = 1; 2; 3; :::) denote a new time series obtained by averaging (arithmetic

mean) the original series X over nonoverlapping blocks of size m [14][15], i.e.,

X

(m)
k

= (1=m)(Xkm�m+1 + :::+Xkm); k = 1; 2; 3; ::: (2.2)

Note that for each m, the aggregated time series X(m) de�nes a wide sense

stationary process. Let r(m) denote the corresponding autocorrelation function.

X is called exactly self-similar with self-similar parameter H = 1 � �=2 if for all

m = 1; 2; 3:::, 1=mH(Xkm�m+1 + � � � + Xkm), k = 1; 2; 3; :::, has the same �nite-

dimensional distributions as X [16].

The process X is called exactly second-order self-similar with self-similarity

parameter H = 1��=2 [16][15] if for all m=1,2,3..., the corresponding aggregated

process X(m) has a variance which is var(X(m)) = �
2
m
�� and the same correlation

structure as X, i.e.,

r
(m)(k) = r(k); (k = 1; 2; 3; :::) (2.3)

X is called asymptotically second-order self-similar with self- similarity param-
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eter H = 1 � �=2 [16][15] if

r
(m)(k)! r(k); as m!1; (k = 1; 2; 3; :::) (2.4)

In other words, X is exactly or asymptotically second-order self-similar if the

corresponding aggregated processes X(m) are the same as X or become indistin-

guishable from X at least with respect to their autocorrelation functions.

It is easy to see that exact self-similarity implies second-order self-similarity.

It is the strongest de�nition of self-similarity. We are more interested in the

second-order self-similar process in this paper.

More generally, a stochastic process satisfying relation (2.1) is said to exhibit

long-range dependence. So long-range dependence is characterized by an hyper-

bolically decaying autocorrelation function. Obviously, long-range dependence is

a necessary condition of self-similarity but not a su�cient condition.

Our interest in this paper is modeling the telecommunication tra�c that

is long-range dependent (may not necessary be self-similar) using self-similar

stochastic processes that possess long-range dependence.

The parameter H is also called Hurst parameter. It is also quantity for measur-

ing the degree of long-range dependence or equivalently the degree of the \bursti-

ness" of the tra�c, namely, the burstier the tra�c the higher the H.

The basic mathematical di�erences between long-range dependent tra�c and

the conventional models are [14]:

1. Aggregated Process

The aggregated processes X(m) of a long-range dependent process possess a

nondegenerate correlation structure as m!1, while the conventional models all

have the property that the autocorrelation functions of their aggregated processes

X
(m) tend to second order pure noise, i.e., for all k � 1,
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r
(m)(k)! 0; as m!1

This is illustrated in the plots in Figure 2-1. If the original time se-

ries X represents the number of Ethernet packets per 10 milliseconds (plot

(e)), then plots (a) to (e) depict segments of the aggregated time series

X
(10000)

; X
(1000)

; X
(100)

; and X
(10), respectively. All the plots look " sim-

ilar" and distinctively di�erent from pure noise, which means they are not inde-

pendently distributed random variables.

2. Autocorrelation Function

The autocorrelation function of a long-range dependent process in the form

of equation (2.1) implies that
P

k
r(k) = 1 , which tells us that although high-

lag correlations are all individually small, their cumulative e�ect is of importance

and gives rise to features which are drastically di�erent from those of the more

conventional short-range dependent processes. In contrast, the latter are charac-

terized by an exponential decay of the autocorrelations resulting in a summable

autocorrelation function 0 <
P

k r(k) <1.

3. Frequency Domain

In the frequency domain, the spectral density of a long-range dependent pro-

cess obeys a power-law behavior near the origin. i.e.,

f(�) � �
�

L2(�); as �! 0 (2.5)

where 0 < 
 < 1; L2 is slowly varying at 0, and f(�) =
P

k
r(k)eik� denotes

the spectral density function. This implies that f(0) =
P

k r(k) = 1, that is,

the spectral density tends to +1 as the frequency � approaches 0. On the other

hand, processes that only possess short-range dependence are characterized by a
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spectral density function f(�) which is positive and �nite at � = 0.

4. Variance

The variance of the aggregated time series X
(m) of a long-range dependent

process decreases more slowly than the reciprocal of the sample size, that is

var(X(m)) � am
��
; as m!1; (2.6)

where a is a �nite positive constant independent of m, and 0 < � < 1. The �

here is related to the 
 in equation (2.5) by � = 1 � 
. Note that the self-similar

parameter H is represented in terms of � by H = 1 � �=2, as in the de�nitions

(2.3) and (2.4). In contrast, for stationary processes whose aggregated series

X
(m) tend to second-order pure noise (i.e., r(m)(k) ! 0; fork � 1) the sequence

var(X(m)) : m � 1 satis�es

var(X(m)) � bm
�1
; as m!1; (2.7)

where b is a �nite positive constant independent of m.

This feature leads to one of the methods of identifying self-similarity, variance-

time plots, as mentioned in the previous section. It is later used in this paper for

estimating the degree of self-similarity or the degree of long-range dependence,

namely, parameter H.

It has been proved [15] that a speci�cation of the autocorrelation function

satisfying equation (2.1) is equivalent to the speci�cation of the spectral density

function satisfying equation (2.5), and further it is equivalent to the speci�cation

of the sequence (var(X(m)) in equation (2.6). These are di�erent manifestations

of the long-range dependence of the underlying wide-sense stationary process X.
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Figure 2-2: Autocorrelation Comparison of Single Video versus Aggregated Video

Sources

2.4 Implication of Long-Range Dependent Pro-

cess on Network Performance

A direct implication of self-similarity or long-range dependence is that the bursti-

ness of the tra�c typically intensi�es as the number of active tra�c sources in-

creases. This is in contrast to the conventional idea that tra�c becomes smoother

(less bursty) as the number of tra�c sources increases, which is the typical nature

of aggregate tra�c of the "Poisson-like" models.

The burstiness is proportional to the degree of the correlation of the tra�c, so

the correlation function can re
ect the degree of burstiness. Therefore, the above

statement can be easily proved visually by looking at the correlation function.

Figure (2-2) shows a correlation function comparison between a single video source

data that was collected at Bellcore against aggregated video source.

The lower curve is the autocorrelation of a single video �le with 57000 frame
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samples. The upper curve is the autocorrelation function of three aggregated video

sources each with 57000 samples. The aggregation is simply the summation of

three video sources. Clearly, the autocorrelation of the aggregate tra�c is bigger

than that of the single tra�c, which is equivalent to saying that the aggregated

source is more bursty than the single source.

A congestion management study in the presence of self-similar tra�c at Bell-

core [18][19] suggested that the congestion phenomenon seen in the presence of

self-similar tra�c di�ers drastically from that predicted by the conventional traf-

�c models. An access class scheme proposed for Switched Multimegabit Digital

Service (SMDS) on a public B-ISDN was considered. Ethernet data in a trace-

driven simulation of a LAN/B-ISDN interface was employed to observe the e�ect

of the actual aggregate LAN tra�c on the behavior of the SMDS service interface

bu�er, i.e. the relationship between packet delay, packet loss and the amount of

bu�ering at the interface.

The results show that overall packet loss decreases very slowly with increasing

bu�er capacity, in sharp contrast to Poisson-based models where losses decrease

exponentially fast with increasing bu�er size [20]. Moreover, packet delay (95th

percentile) always increases with bu�er capacity, again in contrast to the conven-

tional models where delay does not exceed a �xed limit regardless of bu�er size

[18]. This behavior, according to the author, is typical for self-similar tra�c and

can be readily explained using its properties.

In addition, a simple network that provides LAN interconnection was simulated

at Bellcore to study the congestion behavior due to tra�c access contention [19].

The combined tra�c is modeled by the measured Ethernet traces. The results

from their study presented below follows [19]:

(1) There exist large variations in the network tra�c on time scales of hours,

days, or months; this aggravates careful sizing of network components, since small

errors in engineering can incur drastic penalties in loss or delay.
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(2) Although some of the standard tra�c models suggest that congestion prob-

lems essentially disappear with su�cient bu�er capacity, realistic network tra�c

shows that such behavior cannot be expected; large bu�ers will not prevent con-

gestion from occurring but introduce instead undesirable delay characteristics.

(3) During congestion periods, congestion persists long enough for the e�ects

of user and protocol responses to be felt.

(4) A detailed examination of congestion periods shows that when congestion

occurs, losses are severely concentrated and are far greater than the background

loss rate; losses may exceed the long-run loss probability by an order of magnitude

during the �rst second following the onset of congestion, while the losses are

elevated by over two orders of magnitude during the �rst 100 milliseconds.

(5) Fortunately, many congestion episodes are preceded by signs of impending

danger; whether detecting congestion or activating congestion avoidance responses

can be done reliably far enough in advance of an actual congestion period requires

further study.

These results provide convincing evidence for the signi�cance of self- similar or

long-range dependent network tra�c for engineering future integrated high-speed

data networks.
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Chapter 3

Modeling of Long-Range

Dependent Phenomena

An important requirement of practical tra�c modeling is to generate synthetic

data sequences that exhibit long-range dependent features corresponding to the

measured data so that the corresponding network performance can be studied.

Hence, we need to �nd out mathematical models that can be used for the above

purpose. The simplest models are stationary stochastic processes that have hy-

perbolically decaying correlations, or equivalently, are long-range dependent.

The two best known classes of stationary processes with slowly decaying

correlations/long-range dependence are fractional Gaussian noise and fractional

autoregressive integrated moving- average (ARIMA) processes. The former is ex-

actly second-order self-similar process, while the latter is asymptotically second-

order self-similar process [15].

Fractional Gaussian noise X = (Xk : k � 0) with a parameter H 2 (0; 1),

is a stationary Gaussian process with mean �, variance �
2, and autocorrelation

function r(k) = 1=2(jk + 1j2H � jkj2H + jk � 1j2H); k > 0. As k ! 1, r(k) �

H(2H�1)jkj2H�2. It has been proved [15] that the resulting aggregated processes

X
(m)(m = 1; 2; 3; ::) all have the same distribution as X for H 2 (0; 1). Thus, by
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de�nition of equation (2.3), fractional Gaussian noise is exactly second-order self-

similar with self-similar parameter 1=2 < H < 1 (since H = 1 � �=2 and 0 <

� < 1 from equation (2.1)). Methods for estimating the three unknown parameters

�, �2 and H are known.

A fractional ARIMA(p,d,q) process Y = (Yk : k � 0), where p and q

are non-negative integers and d is real is a natural generalization of standard

ARIMA(p,d,q) where d is integer [2]. It is de�ned to be,

�(B)rd
Yk = �(B)ak (3.1)

where �(B) = 1 � �1B � � � � � �pB
p and �(B) = 1 � �1B � � � � � �qB

q are

polynomials in the backward-shift operator B where Byk = yk�1. ak with k =

1; 2; 3; ::: is a white noise process. r = 1 � B denotes the di�erencing operator,

and the rd is the fractional di�erencing operator de�ned by

r
d = (1�B)

d

=
1X
k=0

 
d

k

!
(�B)

k

= 1� dB �

1

2
d(1 � d)B2

�

1

6
d(1 � d)(2 � d)B3

� � � � (3.2)

It has been shown [15] that for d 2 (�1=2; 1=2), Y is stationary and invert-

ible. Its autocorrelations satisfy r(k) � �k
2d�1 as k !1, where � is a �nite

positive constant independent of k. Moreover, the aggregated time series X(m)

of a fractional ARIMA(p,d,q) process satisfy (2.4) for �1=2 < d < 1=2. Thus,

relation (2.1) and (2.4) hold and Y is asymptotically second order self-similar

with self-similarity parameter H = 1 � �=2 = 1 � (1 � 2d)=2 = d + 1=2, for all

0 < d < 1=2 (0 < � < 1).

Since d is in proportion to H, its value represents the degree of long-range
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dependence. The higher the degree, the bigger the value.

Compared with the fractional ARIMA(p,d,q), fractional Gaussian noise has

only three parameters. It may not be capable of capturing the wide range of low

lag correlation structure. On the other hand, fractional ARIMA(p,d,q) which has

more parameters (including �
0

s and �
0

s) has the advantage in that respect over

fractional Gaussian noise. In particular, fractional ARIMA can be expressed by its

two basic forms: ARIMA(0,d,0) and ARIMA(p,0,q) (equivalent to ARMA(p,q)),

where the former describes the long-term correlation and the latter describes the

short-term correlation behavior. Therefore the modeling can be done by two

steps, i.e., �rst build ARIMA(0,d,0) and then build ARIMA(p,d,q) on top of

ARIMA(0,d,0). This simpli�es the modeling to a certain extent. Because of

this feature, fractional ARIMA processes are much more 
exible and capable of

simultaneous modeling of short- term and long-term behavior of a time series than

fractional Gaussian noise does.

An alternative way for constructing a self-similar process is based on aggre-

gating many simple renewal reward processes exhibiting inter-renewal times with

in�nite variance [15]. In contrast to the fact that the two formal mathematical

models do not provide any physical interpretation to self-similar phenomena, this

method represents some underlying physical process for forming the self-similar

process, which can be appealing in the context of high-speed packet tra�c.

Two approaches in the above regard were used at Bellcore for constructing

self-similar processes [14]. The �rst method simulates the bu�er occupancy in an

M/G/1 queue, where the service time distribution G has in�nite variance. It re-

sults in an asymptotically second-order self-similar bu�er occupancy process. The

second method is aggregation of many simple AR(1)-processes and the resultant

superposition process is asymptotically second-order self-similar. This methods

require massively parallel computers with a large amount of processors.

The fractional ARIMA(p,d,q) process is chosen for modeling the long -range
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dependent tra�c in this paper, mainly because of its good features and the fact

that it does not require massively parallel computers. We believe it is important

that the self-similar phenomena be observed and be processed in a less demanding

environment such as workstations.

Modeling using ARIMA(p,d,q) involves parameter estimation of p, d and q as

well as the corresponding � and � parameters. The e�ect of the d parameter on

distant observations decays hyperbolically as the lag increases while the e�ect of

� and � parameters decay exponentially. So d is to describe the high-lag correla-

tion structure and the � and � are to describe the low-lag correlation structure.

Provided that ARIMA(0,d,0) and ARIMA(p,0,q) are available, the combination

of the two will result in ARIMA(p,d,q).

3.1 ARIMA(0,d,0)

ARIMA(0,d,0) is the simpliest and the most fundamental of the fractionally di�er-

enced ARIMA processes. Its correlation at high lags is supposed to be similar to

those of an ARIMA(p,d,q) with the same value of d, since for very distant observa-

tions the e�ects of the � and � parameters will be negligible. With the intention of

understanding the long-range dependence, we started with ARIMA(0,d,0). This

section is a review on ARIMA(0,d,0) process from [21].

ARIMA(0,d,0) is de�ned to be a discrete-time stochastic process xt which may

be represented as

r
d
xt = at; (3.3)

where the operator rd is de�ned in equation (3.2) and the white noise at

consists of independent identically distributed random variables with mean zero

and variance �2
a
.
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The spectral density of xt is

s(!) = (2sin
1

2
!)�2d; 0 < ! � � (3.4)

and

s(!) � !
�2d

; ! ! 0: (3.5)

The covariance function of xt is


k = E(xtxt�k) =
(�1)k(�2d)!

(k � d)!(�k � d)!
(3.6)

and the correlation function of xt is

�k = 
k=
0 =
(�d)!(k + d � 1)!

(d� 1)!(k � d)!
; (k = 0;�1:::); (3.7)

�k =
d(1 + d):::(k � 1 + d)

(1 � d)(2 � d):::(k � d)
(k = 1; 2; :::): (3.8)

In particular 
0 = (�2d)!=(�d)!
2
and �1 = d=(1 � d).

As k !1

�k �

(�d)!

(d � 1)!
k
2d�1 (3.9)
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Factorial of a fractional number r that we used in the above several equations

is de�ned as

r! = �(r + 1)

where the Gamma Function is de�ned as

�(r) =

Z
1

0
t
r�1

e
�t
dt

However, just like factorial of an integer number, r! can be expressed as r(r�

1)(r � 2) � � �. Because of this, equation (3.7) can be reduced to equation (3.8).

Obviously, equation (3.9) indicates hyperbolic decay of the correlation function

as it should.

When 0 < d <
1
2, the ARIMA(0,d,0) process is a stationary process with long

memory. The correlations of xt are all positive as in equation (3.8) and decay

monotonically and hyperbolically to zero as the lag increases as in equation (3.9).

The spectral density of xt is concentrated at low frequencies: s(!) is a decreasing

function of ! and s(!) ! 1 as ! ! 0, but s(!) is integrable as in equation

(3.5).

When d = 1
2 the ARIMA(0,d,0) process just fails to converge. Its spectral

density has the form

s(!) = 1=2sin(
1

2
!) � !

�1

When d = 0, the ARIMA(0,d,0) process is white noise, with zero correlations

and constant spectral density.
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3.2 Generating ARIMA(0,d,0) Time Series

We now consider how to generate ARIMA(0,d,0) time sequences for a given d.

According to equation (3.3), an ARIMA(0,d,0) sequence can be obtained if d is

known and if white noise is available. However, an important assumption we need

to make is that t � 0, namely, all the x values are equal to zero for negative time

index, i.e., x = 0; for t � 0. Under this assumption, we can get a �nite time

series starting from x0 to xn, where n is any integer number.

x0 = a0

x1 = a1 + dx0

x2 = a2 + dx1 +
1

2
d(1� d)x0

:::

xn = an + dxn�1 +
1

2
d(1 � d)xn�2:::+

1

n!
d(1 � d)(2 � d):::(d� n+ 1)x0

In general.

xn =
nX

k=1

 
d

k

!
xn�k + an n � 0 (3.10)

For the nth sample, n multiplications/additions are involved.

Since this method implements the de�nition of ARIMA(0,d,0), we call it the

direct ARIMA method.

Another way of generating ARIMA(0,d,0) was introduced by Hosking and was

originally used for hydrological self-similarity studies [22]. This method yields a

stationary process with a normal marginal distribution which is not guaranteed

in the direct method. The algorithm is as follows:

(1) Generate a starting value x0 from the stationary distribution of the process

N(0; �), where �0 is the required variance of the xt.
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(2) For t = 1; 2; :::n� 1, calculate partial correlation coe�cient �tj, j = 1; :::t

recursively via the equations

�tt = d=(t � d)

�tj = �t�1;j � �tt�t�1;t�j j = 1; 2; :::t� 1

Calculate mt =
P

t

j=1 �tjxt�j and �t = (1 � �
2
tt
)vt�1: Then generate xt from the

distribution N(mt; �t).

For the nth sample, n+(n-1) multiplications/additions are required. This is

double the amount of computation compared to the direct method.

Both of the above methods have been implemented in this paper. Because

of the uniqueness of the long-range dependence, the processing time required for

generating one data point increases as the time index increases. This is because,

�rst, the number of multiplications and additions increases as the time index

increases, and secondly, all the previous x values need to be stored for calculating

the current x. Note that in order to be able to test the long-range dependence, a

large number of sample points is de�nitely required. When the number of sample

points is large, the amount of memory needed to store the data can be huge and the

processing time required can be very long. In order to generate tens of thousands

or even several millions of data points on a Sun workstation (sparc 10) or a Dec

Alpha machine, which have limited memory, proper programming with e�cient

usage of memory is crucial. A trade o� between more processing and less memory

occupation (to avoid using a huge array for storing the data, for example) is

necessary to be able to generate hundreds of thousands or millions of data points.

If we calculate all the coe�cients
�
d

k

�
in equation (3.10) in advance and store them

in a �le for later use of generating ARIMA(0,d,0), we can increase considerably

the number of ARIMA(0,d,0) sample points that a machine can generate. The

25



maximum amount of data that our available Sun Sparc 10 can generate in this

case is 120 � 106, while the available DEC Alphas's capacity is around 20 � 106,

since the Sparc 10 has 128 MB memory while the DEC Alpha has 64 MB memory.

In general, the Hosking algorithm requires more time (by approximately a

factor of 2) than the direct ARIMAmethod for the same amount of data. However,

proper use of the \malloc" function and array pointers can reduce the time for

Hosking method. So there is no signi�cant disadvantage for using the Hosking

method in terms of time required.

For 500,000 sample data, the Hosking method requires about 3 days of running

time on a DEC Alphas. However, it only takes about 18 hours to run for 250,000

samples. Moreover, it takes less than one hour to generate 50,000 samples. Clearly,

the number of sample points and time have a nonlinear relationship. With the

direct ARIMA(0,d,0) method, the time required is about 75% to 80% of the total

time required for the Hosking method.

Plots 3-1 show ARIMA(0,d,0) time sequences generated by the direct ARIMA

method and the Hosking method for di�erent d's. All the time series are scaled

to have zero mean and variance 1 (see below for explanations).

Note �rst that for all values of d, two ARIMA(0,d,0) processes generated by

di�erent methods look similar. Further more, the changes in their shapes with

increasing d look similar as well. In fact, the change in shape with increasing d

corresponds to the increasing of the degree of long-range dependence. We will see

this in chapter 4. A closer look shows that both data seem to have local trends in

particular parts and the expected value seems to be changing slowly (more obvious

for big d) even though the mean over the whole series seems to be constant. Such

behavior are referred by [2] as typical for stationary processes with long memory.

An explanation for scaling the time series to have zero mean and variance

1 is given as follows. Originally, both methods of generating the ARIMA(0,d,0)

process are supposed to produce zero mean and variance 1. Due to limited number
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(a) ARIMA(0,d,0) time series with d=0.1
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(b) ARIMA(0,d,0) time series with d=0.2
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(c) ARIMA(0,d,0) time series with d=0.3
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(d) ARIMA(0,d,0) time series with d=0.415
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(e) ARIMA(0,d,0) time series with d=0.49

Figure 3-1: ARIMA(0,d,0) processes with zero mean and variance 1 generated by

the direct ARIMA and the Hosking methods . Value of d range from 0.1 to 0.49.
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of sample points (50,000 in this case) that we generate, the resultant process have

a nonzero mean and a nonunit variance. For purpose of comparison, we scale all

the time series to have zero mean and variance 1. In real tra�c modeling, no

matter what mean and variance the simulated ARIMA process has, it needs to

be eventually scaled so that it has the same mean and variance of the real tra�c

data.

A detailed comparison of ARIMA(0,d,0) time sequences generated by the di-

rect ARIMA(0,d,0) method and the Hosking method will be given in the next

chapter.

3.3 Estimation of d from ARIMA(0,d,0)

A primary question now is how can we have a method to test the generated

ARIMA(0,d,0) sequences so that we know it does indeed have the long-term cor-

relation characteristics that we wanted. In other words, does it still have the same

value d as we set it to be? This is especially important in view of the positive

time index constraint in generating the time series.

From equation (3.6) we can get an expression for d in terms of correlations by

taking the ratio of rk+1 to rk, i.e.,

rk+1

rk

=
(�1)(k � d)!(�k � d)!

(k + 1 � d)!(�k � 1� d)!

=
k + d

k + 1 � d

(3.11)

Solving this equation for d we get,

d =
rk+1(k + 1) � rkk

rk + rk+1
(3.12)
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Since rk di�ers from autocorrelation �k only by a factor of 1=r0, the above

equation holds for �k as well

d =
�k+1(k + 1) � �kk

�k + �k+1
(3.13)

For a given time series of ARIMA(0,d,0), it is always possible to calculate

its correlation functions. Hence its parameter d can be in principle calculated

using equation (3.13). Equation (3.13) provides a simple means of measuring the

parameter d of a given ARIMA(0,d,0) sample time series. Therefore we can know

the di�erence of the theoretical ARIMA(0,d,0) and the simulated ARIMA(0,d,0).

This method is used in chapter 4 as a testing tool.

A more general method for estimating d of an ARIMA(p,d,q) time sequence

and real tra�c trace data is needed. It is the variance time plot method, which

is introduced in the next chapter.
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Chapter 4

Characterizations of Simulated

ARIMA(0,d,0)

An embedded limitation of implementing practical ARIMA(0,d,0) time series is

that only a �nite number of samples can be generated, i.e., the time index of the

sequence has to start from zero then goes to a �nite positive integer number. With

time index zero, x0 is not dependent upon any previous value, x1 can depend only

upon x0, and so on. In the case of the theoretical formula, x0 and all the is other xt

are supposed to be dependent upon all the other previous x values with negative

time index. The limitation on the time index in the positive direction brings a

startup problem in practical implementation, that is, the long-range dependence

can only be correctly observed with a time index greater than some value. This

value is usually very large and it di�ers with di�erent d. The bigger the d, the

bigger this value, because the bigger the d, the higher is the degree of long-range

dependence.

However, the number of data that we can generate is always �nite and is

limited by the computer facilities available. Therefore, a di�erence between the

simulated ARIMA(0,d,0) process and the theoretical ARIMA(0,d,0) process will

always exist.
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This chapter is a study of the characteristics of the simulated ARIMA(0,d,0)

processes, both for the direct ARIMA method and the Hosking method. We

will compare the simulated ARIMA(0,d,0) series with its theoretical counterpart

with di�erent values for d. This study reveals some very interesting character-

istics of ARIMA(0,d,0) that are exceptional for long-range dependence, that we

usually do not expect to see. It helps us greatly to understand long-range depen-

dence. It provides as well the foundation to build the ARIMA(p,d,q) on top of

ARIMA(0,d,0)

Since a hyperbolic decay of the correlation function of an ARIMA(0,d,0) indi-

cates long-range dependence [21], the correlation function is used throughout this

paper as a characterization of the long-range dependence and an estimator to char-

acterize the di�erence between the theoretical ARIMA(0,d,0) and the simulated

ARIMA(0,d,0).

Before we go into a detailed discussion, let us �rst look at the plots that present

evidence of long-range dependence. Figures 4-1 (a)-(f) show comparisons of the

theoretical autocorrelation function of ARIMA(0,d,0) process to the simulated

ARIMA(0,d,0) counterpart, generated both by the direct ARIMA method and

the Hosking method. Values of d are 0.1, 0.2, 0.3, 0.35, 0.415, and 0.49 for

plots (a) to (f). The dotted line in each plot is the theoretical autocorrelation

function of ARIMA(0,d,0). It is calculated according to equation (3.7). We can

see clearly that the correlations of all the plots decay very slowly towards a large

lags and remain persistent through the long term, although the values are small.

As d increases, the correlations increase as well, implying larger degree of self-

similarity or long-range dependence. These plots are discussed more fully in the

next section.
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Figure 4-1: Sample autocorrelation functions of simulated and theoretical

ARIMA(0,d,0). Value of d are 0.1, 0.2, 0.3, 0.35, 0.415, and 0.49 respectively
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4.1 Correlation Behavior of the Simulated

ARIMA(0,d,0) For Fixed Amount of Sam-

ple Data

In this section we will compare the correlation function of the simulated

ARIMA(0,d,0) to the theoretical correlation function and get a sense of how the

di�erence is related to the d in terms of correlation. From our earlier discussion, a

bigger d represents a larger degree of long-range dependence. So a larger amount

of data will be required in order to closely represent the theoretical characteris-

tics. If we are generating a �xed amount of ARIMA(0,d,0) samples for di�erent

d ranging from 0.1 to 0.49, we should expect to see that the di�erence between

the theoretical autocorrelation and the simulated counterpart becomes bigger as d

increases. Figure 4-1 is a demonstration of this. Plot (a) to (f) of �gure 4-1 show

correlation functions of simulated ARIMA(0,d,0) with �xed 50,000 sample points

for all cases, both generated by the direct ARIMA method and by the Hosking

method versus the theoretical correlation. Each plot corresponds to a speci�c d.

In general, we can see that the correlation di�erence between the simulated

time series and the theoretical ones increases as d increases, regardless of the

method used to generate the sequences. Secondly, the correlation is very noisy or

random for small d. It becomes smoother as d increases. The reason is that for

small d, the coe�cients
�
d

k

�
decay relatively fast, the correlation between sample

points is very weak. The process is thus close to white noise process. So, its

correlation function are of very small values and look random under logrithmic

scale.

Moreover, the di�erence between correlations of the direct ARIMA series and

the Hosking method seems to increase as d increases. Note however, that dif-

ferent sets of random white noise processes at were used for generating every

ARIMA(0,d,0) time series in �gure 4-1 Since only 50k sample points were gen-
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erated, the ARIMA(0,d,0) process won't be a good ergodic process as we as-

sumed to be for such small sample set. Hence, di�erent white noise processes

with di�erent seeds may cause di�erences in the resulting correlations of the un-

derlying ARIMA(0,d,0) processes. Sample average statistics over several random

ARIMA(0,d,0) processes are needed to draw correct conclusions.

Therefore, ten samples for each of the two methods for each d were collected.

The correlation function was then averaged over the ten correlation functions of

the individual samples. Figure 4-2 shows the error of the averaged correlation

function with respect to the theoretical correlation function. The error itself is

the di�erence of the two (theoretical versus average simulated) averaged from lag

1000 to lag 3000 (i,e., E(abs(di�erence over lags 1000 to 3000)) ) This range of lags

covers the major di�erence of the simulated ARIMA(0,d,0) and the theoretical

ARIMA(0,d,0), so it is representative.

Notice that for each d, ten samples of the direct ARIMA method and ten

samples of the Hosking method are generated by the same ten random noise

sequences. For di�erent d, ten di�erent sets of random sequences are used. All of

the time series have 50,000 data points.

From the plot we can draw two conclusions. First, for �xed amount of data the

error of the correlation of the simulated ARIMA(0,d,0) increases as d increases.

This is exactly what we expected. Hence in order to reduce the error of correlation

for bigger d, we need to generate a larger amount of data. Secondly, there is no

obvious di�erence between the direct ARIMA method and the Hosking method.

This is a very important result. If there is no statistical di�erence between the

two, we can use either one to generate simulated ARIMA(0,d,0). For example,

we can use the simpler one, which is the direct ARIMA method.
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of comparison: 1000 to 3000. Value of d are 0.1,0.2,0.3,0.35, 0.415,0.49

4.2 Correlation Behavior of the Simulated

ARIMA(0,d,0) For Changing Amount of

Sample Data

In this section, we will �x the value of d and compare �rst the correlations of the

simulated ARIMA(0,d,0) with di�erent amounts of sample data with respect to

the corresponding theoretical correlation functions. The d value is chosen to be

0.415. The sample points ranges from 100k to 500k in a step size of 100k. They are

drawn from the same ARIMA(0,0,415,0) time sequence with 500k sample points.

The Hosking method is compared to the direct ARIMA method.

Figure 4-3 (a) and (b) show two cases of comparison, where four di�erent ran-

dom sequences were used to generate all four ARIMA(0,0.415,0) time sequences

with 500k sample points for each. The error is measured as the mean di�erence
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of the correlation function of the simulated one to the theoretical one over lags

from 1000 to 3000.

Clearly, for both methods, the error tends to decrease as the number of sample

points increases. Again, this matches what we expected. Because of the random-

ness, plot (a) and plot (b) di�er in that, in plot (a) the direct ARIMAmethod has

a better performance than Hosking method, while the result is just the opposite

in plot (b). So no conclusions about which one is better can be made.

In parallel, the correlations of di�erent segments of an entire data set with

size 500k are compared in �gure 4-4. The segment size is 100k. Same four

ARIMA(0,0.415,0) serieses used in �gure 4-3 are used here. Results are shown in

�gure 4-4.

Interestingly, compared with �gure 4-3 a similar tendency of error decrease

is observed, but with respect to increasing segment number. That is, as more

data is chopped o� from the beginning, the error in the correlation decreases.

This is a typical characteristic of the simulated ARIMA(0,d,0), due to embedded

limitation on in�nite sample points as the long-range dependence requires. Figure

4-4 demonstrates that an e�ective way to compensate for the startup problem is

to chop o� the beginning part of the time series.

4.3 Measurement of d of the Simulated

ARIMA(0,d,0)

So far, we have studied qualitatively the characteristics of the simulated

ARIMA(0,d,0) in regard to the sample number, segmentation and di�erent d.

In section 3.3, a method to estimate d of the simulated ARIMA(0,d,0) was

discussed. In this section we are going to apply this method to characterize the

degree of the long-range dependence of the simulated ARIMA and compare it to

the intended d. The considered simulated ARIMA(0,d,0) sequences are generated
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by both the direct and the Hosking methods. The parameter d value ranges from

0.1 to 0.49.

The equation for calculating d is as stated in section 3.3,

d =
�k+1(k + 1) � �kk

�k + �k+1
(4.1)

Theoretically, the lag k can be any number in the range of [0, N], where N is

the number of the data sample, as long as the correlation function is available.

So presumably, a good measure of d is to get a sequences of d values by using

di�erent index k of the correlation, then take the resultant mean value. However,

we need to be cautious at this point. We have observed that the accuracy of this

method largely depends on what value d is and upon what lag of the correlation

to use. In short, correct usage of this method for measuring d, depends upon the

knowledge of the measured ARIMA(0,d,0) sequence.

The following �gure 4-5 shows the �rst 50 consecutive measured d (in regard

to index k) of 6 ARIMA(0,d,0) sequences with 50,000 sample points generated

by the direct method. The �rst 50 d's are calculated by the �rst consecutive

25 correlations, where the �rst d is calculated by �0 and �1 and the second d is

calculated by �1 and �2 and so on.

Obviously, the measured d in each case varies from the �rst d value as the

correlation index k increases. The smaller the parameter d the bigger the varia-

tion. This result is consistent with sample correlation plots in �gure 4-1, where

correlation is smoother for larger d and noisier for smaller d.

Figure 4-6 is the corresponding variance of the measured 50 d for parameter

d equals 0.1, 0.2, 0.3, 0.35, 0.415, 0.49 respectively. Sequences generated by both

methods are measured. From what is shown in �gure 4-6, the variance of the

simulated ARIMA(0,d,0) sequences decreases as d increases. Both methods of

generation show similar results.

An explanation of this is the following. When parameter d is small, the value
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Figure 4-5: Measured �rst 50 d of ARIMA(0,d,0) generated by the direct method.
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44



0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

d

V
a
ri
a
n
c
e
 o

f 
th

e
 f
ir
s
t 
5
0
 d

Variance of the Measured first 50 ds vs d

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

5000

10000

15000

d

V
a
ri
a
n
c
e
 o

f 
th

e
 f
ir
s
t 
5
0
 d

Variance of the Measured first 50 ds vs d

Solid: Direct ARIMA
Dash:  Hosking ARIMA

Figure 4-6: Variance of the measured �rst 50 d of simulated

ARIMA(0,d,0) generated by direct method. The corresponding parameter d is

0.1,0.2,0.3,0.35,0.415,0.49 respectively

45



0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Parameter d

M
ea

su
re

d 
d0

 (
fir

st
 d

)

Parameter d vs Measured d0 and Their Difference

Solid: Direct ARIMA

Dash:  Hosking ARIMA

Measured d

Difference

Figure 4-7: Measured �rst d versus the parameter d (originally set) which is set

to be 0.1,0.2,0.3,0.35,0.415,0.49

of correlation is rather noisy as shown in �gure 4-1. The randomness increases as

the lag index k increases. As d increases the correlation becomes more smoother.

So �0 and �1 are the most reliable values for calculating the d. In addition, �0 and

�1 as statistical quantities encompass the maximum number of samples. Hence a

measurement d based on �0 and �1 should be most reliable, especially when d is

small.

Figure 4-7 and �gure 4-8 show the measured value of d from �0 and �1 and

the average of the �rst 10 d measurements (from �0 and �1, �1 and �2 through

�4 and �5) as a function of the parameter (intended) d for the purpose of com-

parison. Again, the direct method is compared to the Hosking method. All six

ARIMA(0,d,0) processes generated by each method have 50k sample points and

are generated by six di�erent random noise processes. However, for each d value,

same random noise process is used for both methods. The di�erence between the

parameter (intended) d and the measured d are the bottom curves in both �gures.
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Note that the measurement based only on �0 and �1 matches the intended d better

and is less noisy than the measurement based on averaging. Note also that the

di�erence between the direct method and the Hosking method for both cases is

small and negligible.

The method of measuring the d of a simulated ARIMA(0,d,0) discussed in

the section may seem to have a disadvantage since it depends upon correlation, a

statistical quantity, which is not reliable for small d when the number of sample

points is not large enough. However this disadvantage re
ects again the special

characteristics of long-range dependence, i.e., its measurement requires a large

number of sample points.

Despite the disadvantage of this method and the fact that it can only be

used for ARIMA(0,d,0), it is still a simple and direct way of testing the d of the

simulated ARIMA(0,d,0) which was given a certain intended d. The di�erence

between the two will provide enough information on the accuracy of the simulated
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sequence.

A general method of measuring the d or equivalently the degree of long-range

dependence should be a method which is derived from the characteristics of the

long-range dependence. One of such method is the variance time plot and will be

introduced in the next chapter. Variance time plot is able to estimate d for any

kind of self-similar process including ARIMA(0,d,0) and ARIMA(p,d,q), though

we will see that it is not perfect either.
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Chapter 5

Modeling and Characterization

of ARIMA(p,d,q)

5.1 Generating ARIMA(p,d,q)

In chapter 3, the basic de�nition of ARIMA(p,d,q) has been given in equation

(3.1). In order to generate ARIMA(p,d,q), we can directly implement equation

(3.1) using white noise. However, since we have a way of generating ARIMA(0,d,0)

from the previous chapter, we can generate ARIMA(p,d,q) from ARIMA(0,d,0).

This just requires some reformation of equation (3.1).

Equation (3.1) has the form:

�(B)rd
Yt = �(B)at (5.1)

Let us move the di�erencing operator from left side to right side, we get:

�(B)Yt = �(B)r�dat (5.2)

De�ne xt = r
�d
at, then move the operator to the left, which leads to the form
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of

r
d
xt = at (5.3)

This is exactly the same form of equation (3.3). Hence xt is ARIMA(0,d,0).

Thus an alternative form of equation (3.1) is

�(B)Yt = �(B)xt t � 0; (5.4)

This is just an ARMA �lter, with an ARMA(0,d,0) process as the input.

From this equation we can get ARIMA(p,d,q) from ARIMA(0,d,0). If p = 2

and q = 2, the equation (5.4) turns into

(1 � �1B � �2B
2)Yt = (1 � �1B � �2B

2)xt t � 0 (5.5)

or

Yt = �1Yt�1 + �2Yt�2 � �1xt�1 � �2xt�2 + xt t � 0 (5.6)

Likewise, a similar format can be obtained for any p and q values.

5.2 Estimation of d

There are several formal mathematical methods of estimating the parameter d of

a self-similar process, as we discussed in chapter 1. One of them is the variance

time plot.

A variance time plot is a method that directly applies the characteristics of

a self-similar or long-range dependent process. In section 2.3 we have discussed
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three equivalent features of long-range dependent process, which are features of

self-similar process as well. One of them is that the variance of the arithmetic

mean of an aggregated process X(m) decreases more slowly than the reciprocal of

the sample size, that is,

var(X(m)) � am
��
; as m!1; (5.7)

Therefore, given a self-similar process or a long-range dependent process, we

can test its d via equation (5.7).

Take the log base 10 on both sides of equation (5.7), we get

log10(var(X
(m)) � log10a� �log10m (5.8)

where X(m) is de�ned in chapter 2 equation (2.2).

The so-called variance time plot is obtained by plotting log10(var(X
(m)) against

log10(m). The slope at large m is the estimated �. Values of this asymptotic slope

between -1 and 0 suggest self-similarity [15]. According to the de�nition of the

Hurst paramter H, H = 1� �=2 and H = d + 1=2, therefore in terms of �

d = 1=2 � �=2 (5.9)

However, the variance time plot is not reliable for empirical records with small

sample size (several hundred thousand is not considered to be big sample size).

Otherwise it is highly useful and gives a rather accurate picture about the self-

similar nature of the underlying time series and about the degree of self-similarity.

It can be used for measuring parameter d of ARIMA(p,d,q) as well as for real

trace data. In cases where not enough data samples are available for an accurate
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variance time plot, we still can use the variance time plot to get a rough estimate

of d and the �ne tuning can be done by matching the correlation function.

A direct use of the variance time plot is to check whether the ARIMA(p,d,q)

generated by the ARIMA(0,d,0) retains the same d, i.e., the same slope as the

generating ARIMA(0,d,0) for big m.

Figure 5-1 shows the variance time plots of ARIMA(0,0.3,0) and the corre-

sponding ARIMA(2,0.3,2) that is generated using equation (5.4).

Clearly, the two curves are well parallel to each other and tend to keep in

parallel as m increases, which implies that they have the same degree of self-

similarity.
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5.3 Estimation of Parameter � and �

Having the method of generating ARIMA(p,d,q) and the method of estimate pa-

rameter d available, the last and �nal question is: how do we estimate parameters

� and � that describe the short range dependence? In this section, the method

of estimating parameters � and � of ARMA(p,q) will be discussed. It will be

shown how this method can be applied for the same parameter estimation but of

ARIMA(p,d,q).

The pseudo linear regression algorithm (PLR) [24] has been used for parameter

estimation of ARMA(p,q). It works in the following way. Assuming that values

of p and q are given, an ARMA (p,q) process zt can be expressed as

zt = b1zt�1 + b2zt�2 + � � �+ bpzt�p + c1wt�1 + � � �+ cqwt�q + wt (5.10)

b
0

i
s and c

0

i
s are the corresponding parameters that need to be estimated and w

is white noise.

De�ne the following matrix,

�t = (b1 b2 � � � bp c1 c2 � � � cq)
T (5.11)

which is a column matrix of size (p + q)x1 that contains all the parameters. It

can be initialized to any value. Then de�ne

�t = (zt�1 zt�2 � � � zt�p "t�1 � � � "t�q)
T (5.12)

which is also a column vector of size (p+ q)x1 and contains the previous feedback

values. " can be initialized to any values.
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Further de�ne matrix Pn of size (p+ q)x(p+ q) and initialized to P0 = I, the

unit diagonal matrix.

At time t, update the coe�cient vector � and � and Pt according to the

following rules:

�t = �t�1 + Pt�1�t�1(zt � �
T

t�1�t�1) (5.13)

"t = zt � �
T

t�1�t (5.14)

�t = (zt � � � zt�p "t � � � "t�q)
T (5.15)

(5.16)

Pt = Pt�1 �
Pt�1�t�

T

t
Pt�1

1 + �
T

t Pt�1�t
(5.17)

The outline of using this algorithm is

(1) Set the correct values of p and q.

(2) Initialize all the matrices to some random values.

(3) Update the parameters according to equation (5.14) through equation

(5.17).

(4) Check the parameter vector � for convergence; if it has not converged, then

repeat the procedure.

However, this method only applies for the parameter estimation of an ARMA

process. The only way to use this method for parameter estimation of an

ARIMA(p,d,q) is to �nd the relation between the two.

From the de�nition of ARIMA(p,d,q) in equation (3.1), we de�ne

ut = r
d
yt (5.18)

such that (3.1) can be expressed in terms of ut in the following way,
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�(B)ut = �(B)at (5.19)

Compare equation (5.19) with equation (5.10), we can see that they have the

same structure. In fact, equation (5.19) is the exact de�nition of an ARMA(p,q)

process. Therefore equation (5.18) provides the transform from ARIMA(p,d,q) to

ARMA(p,q), namely, given ARIMA(p,d,q) sequence, we can get the corresponding

ARMA(p,q) via equation (5.18). Then we can use the PLR algorithm to estimate

the � and � parameters.

Thus we have established a method of estimating d by the method of variance

time plot for any type of self-similar process and the method of estimating param-

eters � and � by equation (5.18) and the PLR algorithm, assuming that values of

p and q are known.

The following is an experiment of applying the PLR algorithm to ARMA(p,q,)

and ARIMA(p,d,q) processes whose parameters are all known to get estimated

parameters. Thus by comparing the original parameters to the estimated ones,

we can show how well this algorithm works.

The �rst example is ARMA time series generated by white noise that has a

zero mean and variance one. The p and q are set to be 3 for both. The coe�cients

of �1; �2; �3; �1; �2 and �3 are (0.5, -0.2, ,0.3, 0.9, -0.2, 0.1). We input this time

series to the PLR algorithm as if its coe�cients are unknown, set p=3, q=3, and

initialize all parameters to 0. Then we execute the above procedure step by step.

The estimated coe�cients converge slowly towards their true values after 50,000

iterations. The coe�cients of the last 5 iterations are listed in Table 5.1.

Among the four coe�cients, only �1 has 34% error, all the others remain within

15% error.

In the second example, we check the � and � coe�cients of an ARIMA(3,0.3,3).

To do that, it is necessary to transform �rst the ARIMA(p,d,q) sequences into the
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Table 5.1: ARMA(3,3) coe�cients estimation

�1 �2 �3 �1 �2 �3

Original Value 0.5 -0.2 0.3 0.9 -0.2 0.1

Iterations Estimated Coe�cients

27527 0.5281 -0.2294 0.3020 0.5938 -0.1459 0.0868

27528 0.5281 -0.2294 0.3020 0.5938 -0.1459 0.0868

27529 0.5280 -0.2294 0.3020 0.5939 -0.1456 0.0869

27530 0.5280 -0.2294 0.3020 0.5939 -0.1456 0.0868

27531 0.5280 -0.2294 0.3020 0.5939 -0.1457 0.0868

Table 5.2: ARIMA(3,0.3,3) coe�cient estimation

�1 �2 �3 �1 �2 �3

Original Values 0.5 -0.2 0.3 0.9 -0.2 0.1

Iterations Estimated Coe�cients

39996 0.5454 -0.0329 0.3573 0.8807 0.0334 0.0117

39997 0.5453 -0.0329 0.3574 0.8808 0.0335 0.0116

39998 0.5453 -0.0329 0.3574 0.8808 0.0335 0.0117

39999 0.5453 -0.0329 0.3574 0.8808 0.0335 0.0116

40000 0.5453 -0.0329 0.3574 0.8808 0.0335 0.0116
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Table 5.3: ARIMA(2,0.3,1) coe�cient estimation

�1 �2 �1

Original Values 1.2 -0.5 0.3

Iterations Estimated Coe�cients

29996 1.3264 -0.4680 0.4982

29997 1.3264 -0.4680 0.4982

29998 1.3264 -0.4680 0.4982

30000 1.3264 -0.4680 0.4981

30001 1.3264 -0.4680 0.4981

corresponding ARMA(3,3). The rest of the procedure is then the same as the �rst

example. The results are shown in Table 5.2.

Comparing the two cases, obviously the former has better results. This is

because noise information is not included in the PLR algorithm for parame-

ter estimation. So the randomness of noise that generate the ARMA and the

ARIMA(0,0.3,0) contribute to the error. Moreover, some information is lost dur-

ing the transformation of ARIMA(p,d,q) to ARMA(p,q). They are the short-term

correlation contributed by d.

Table 5.3 gives a last example of coe�cient estimation of ARIMA(2,0.3,1),

where the original short term coe�cients are ((1.2,-0.5,0.3). Again, we can see

the results agree reasonably well.

5.4 Comparison of ARIMA(p,d,q)

with ARIMA(0,d,0) in Terms of Correla-

tion

In the previous chapter, we have stated that parameters �i and �i determine the

short-term correlation, while the value of d determines the long-term correlation.
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Figure 5-2: Correlation Comparison of ARIMA(2,0.3,1) with coe�-

cients (1.2,-0.5,0.3) (solid), ARIMA(2,0.3,2) with coe�cients (1.2,-0.5,-0.3,1,4)

(dash), ARIMA(3,0.3,3) with coe�cients (0.5,-0.2,0.3,0.9,-0.2,0.1) (dot) and
ARIMA(0,0.3,0) (dash dot). 50,000 sample size for all sequences

Since now we can generate ARIMA(p,d,q) using ARIMA(0,d,0) with the same d,

let us look at the correlation behaviour of the two.

The following ARIMA(p,d,q) are considered:

(1) ARIMA(2,0.3,1) with coe�cients �1 = 1:2; �2 = �0:5; �1 = 0:3 ;

(2) ARIMA(2,0.3,2) with coe�cients �1 = 1:2; �2 = �0:5; �1 =

�0:3; and �2 = 1:4

(3) ARIMA(3,0.3,3) with coe�cients �1 = 0:5; �2 = �0:2; �3 = 0:3; �1 =

0:9; �2 = �0:2; �3 = 0:1

All of them are generated by the same ARIMA(0,0.3,0) sequence according to

equation (5.4). All the coe�cients are chosen such that stationary ARIMA(p,d,q)

processes are obtained.

Figure 5-2 shows the correlation of the above three sequences together with
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correlation function of ARIMA(0,0.3,0). Sample size is 50,000 for all cases. Inter-

estingly, we see that the correlation functions of all three ARIMA(p,0.3,q) are a

nearly parallel up shift from the correlation of the ARIMA(0,0.3,0) regardless of

the di�erent p and q values for each case. And the shift covers at least 500 lags, a

much larger lag than we intuitively expected from short term contribution, since

the values of p and q determine only the short term correlation.

However, this is again the special feature of long-range dependence. Unlike

the ARMA(p,q) or equivalently ARIMA(p,0,q) where uncorrelated white noise is

the input of moving average portion, the input of the moving average portion of

ARIMA(p,d,q) is a long-range dependent ARIMA(0,d,0) time sequence. Hence,

for a nonzero p or q the long-range dependent correlation tends to propagate

along short-term lags of the underlying ARIMA(p,d,q) process. This is why the

correlation curve shifts upward in parallel. On the other hand, the short-term

correlation due to nonzero p and q runs only through small lags and therefore its

change in the short-term correlation is not obvious compared with the e�ect of the

strong long-range dependence. Note however, that what we see from �gure 5-2

does not imply that any ARIMA(p,d,q) process generated from ARIMA(0,d,0)

with the same d must have a correlation function that is in parallel to that of the

ARIMA(0,d,0). Actually, with proper �i and �i coe�cients it is possible that the

propagation of the ARIMA(0,d,0) in the correlation will diminish for large lags

due to the compensation of short-term contribution and thus leave only changes

in short term correlation observable. Such an example will be shown in chapter

6.

Based on this observation, we can draw some conclusions about the inaccu-

racy of �i and �i parameter estimation by the pseudo regression linear algorithm.

Imagine that we are given a real ARIMA(2,0.3,1) process whose coe�cients need

to be estimated. Let its actual coe�cients be exactly the same as those of the

ARIMA(2,0.3,1) process that we used in �gure 5-2, i.e., �1 = 1:2, �2 = �0:5,
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�1 = 0:3. Two possible e�ects on correlation exist due to estimation error. If we

set the p = 3 and q = 3 for estimation and assume that the estimated coe�cients

turned to be �1 = 0:5, �2 = �0:2, �3 = 0:3, �1 = 0:9, �2 = �0:2, �3 = 0:1 which

are the same as those of the ARIMA(3,0.3,3) process we used in �gure 5-2. This

will result in the �rst possible error on correlation function. That is, its correlation

will di�er from the real correlation by almost a positive constant value and the

di�erence will cover a medium range of lags, just as shown in �gure 5-2. Another

di�erent set the estimated coe�cients can result in second possible e�ect on the

real correlation function. That is, only short-term correlation will have error, no

e�ect on large lag correlation. We will discuss this case more in chapter 6.

In both case, the error in correlation function is not caused by error of a single

parameter estimation but rather due to the combination of all the short-term

coe�cients. Obviously, inproper values of p and q may give error. Unfortunately,

we have not developed so far a better way of estimating p and q than guessing their

values by observing the correlation function. However, as our understanding, no

matter what estimated short-term coe�cients we get, error in correlation function

falls into the above two categories.

Although the error of parameter estimation is unavoidable, it is very important

to realize that this error will not signi�cantly e�ect the long-range dependence.

Figures 5-2 and 5-1 are demonstrations of this. Therefore, a variance time plot

with large m will eventually retain the same slope, namely, it will retain the same

d.
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Chapter 6

Video Trace Data Modeling

Having obtained methods of modeling self-similar/long-range dependent

ARIMA(p,d,q), we are now able to model real self-similar tra�c. Among the

Ethernet tra�c and the video "Star Wars" source �les that are observed to be

self-similar or long-range dependent at Bellcore [15], we choose the latter to be our

modeling target. This is because the available Ethernet trace �le provides only

packet arrival time and packet length. In order to make a process of byte/time

unit which is claimed to be self-similar out of the raw data, we have to change the

original data structure. Since we are not sure that this processing will not change

the self-similar nature of the raw data, we rather use the video Starwars data

which is recorded as bytes/frame with �xed frame rate for modeling and later for

simulation. The real trace data of starwars has been acquired from Bellcore.

There are 60 �les of "Star Wars" with a total of 171,000 frames. Real data in

bits/frame is available. The frame period is 1/24 seconds.

Figure 6-1 gives the correlation function with 15,000 lags of the total bits/frame

process with 171,000 samples points.

Compared with the correlation function curves of ARIMA(p,d,q) that we have

seen so far, this curve is obviously not a typical ARIMA(p,d,q). However, it clearly

possesses slowly decaying correlation. So the goal of this trace data modeling is
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Figure 6-1: Correlation Function of Video Starwars in Bits/Frame. Total 171000

Samples.

to capture the long-range dependent characteristics such that the simulated time

series has the closest match to its correlation function. Perfect modeling in terms

of correlation function of a trace data with an irregular correlation structure is

impossible.

The �rst step of modeling is to estimate the parameter d of the trace data

by variance time plot. It is shown in �gure 6-2. Note that the maximum m

we chose is 10,000. Since we have 171,000 sample points in our trace data, the

aggregated process X(10000) has only 17 sample points. This sample size is too

small for calculating any statistics. That is why the curve becomes very noise

when log(m) is greater than 3. The reliable part of measuring d by this variance

time plot should exclude this portion.

According to our earlier discussion in section 5.2, we can calculate d from the

slope of the curve � by using equation (5.9). From the plot, the slope at log(m)

around 2.5 is 0.2, the resulting d is then 0.4.
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Figure 6-2: Variance time plot of video data in bits/frame. Number of aggregation

m range from 2 to 1000 in a step size of 1.

Next, we generated ARIMA(0,0.4,0) sequence for 171,000 samples and plot the

correlation function against the correlation plotted of the video trace data. The

comparison showed that d=0.4 was too small. The variance time plot does not

provide an accurate d due to the lack of sample points, so �ne tuning is needed.

Basically the �ne tuning is done by observing the correlation function of the

trace data and choosing a proper d such that the correlation of the underlying

ARIMA(0,d,0) has the best match to the counterpart of trace data. The best

match found has a d=0.415 in this case.

Figure 6-3 shows the correlation functions of both the trace data and the

simulated ARIMA(0,0.415,0). It is generated by the direct ARIMA method. In

general, the correlation of ARIMA(0,0.415,0) matches as well as can be expected

for large scale of lags, but di�ers by a small gap in the short-term part. Note that

this ARIMA(0,0.415,0) time sequence is chosen to be the best for matching among

10 other sequences that are generated using 10 di�erent white noise processes with
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Figure 6-3: Correlation function of video trace data in bits/frame versus the

correlation function of ARIMA(0,4,15,0). Sample data is 171000 for both cases.

di�erent seeds.

The next step of modeling is to determine values of p, q and estimate the

corresponding parameters �i and �i using the method described in section 5.3,

that is, transforming the trace data into an ARMA(p,q) process following equation

(5.18) and then applying the pseudo regression linear algorithm for parameter

estimation.

Unfortunately, the estimated coe�cients of the transformed ARMA process

does not converge for any value of p and q in this case. This is simply due to the

fact that the trace data is clearly not a true ARIMA process, so the transformed

process can no longer be ARMA.

If we de�nitely want to compensate the short-term di�erence, we can simply

guess the coe�cients for certain p and q. This will require that an ARIMA(p,d,q)

process be generated from an ARIMA(0,d,0) process according to equation (5.4).

Then the correlation function can be plotted to see whether it matches the trace
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data better or not.

Figure 6-3 provides some examples of the simulated ARIMA(p,d,q) with some

randomly chosen short-term coe�cients �i and �i It can be seen from the plots

that the correlation function of ARIMA(p,d,q) is either parallel on top of the

correlation function of the trace data or it oscillates in the short-term portion and

has no e�ect on the long-term correlation. The particular e�ect depends totally

on the combination of all the coe�cients. These are the two cases we referred in

section 5.4 that can happen to the correlation of the ARIMA(p,d,q).

For the purpose of modeling, we want the second case to happen. However,

the gap between video trace data and ARIMA(0,0.415,0) covers the range up to

approximately 300 lags, which implies that value of p may be large. We are aware

of no means to analytically estimate the short-term and it is hardly possible, if not
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impossible, to select proper coe�cients by guessing that will result in a good match

to the correlation of the trace data. On the other hand, our major goal of modeling

is to capture the long-range dependence features of the trace data such that we can

use the simulated sequence to study the network performance under this special

tra�c. Therefore, we can say that to some extent the ARIMA(0,0.415,0) provides

a fair model for the trace data.

The ARIMA(0,0.415,0) time sequence at this point is generated by white noise

whose mean is zero and variance is one. So the data are 
oating numbers, either

positive or negative. The �nal version of simulated ARIMA(0,0.415,0) needs

to be scaled to the mean and variance of the trace data. Moreover, since the

simulated process is supposed to be bits/frame, the data should be rounded up to

integer values and any negative number should be replaced by zero. Correlation

of the �nal version of ARIMA(0,0.415,0) generated by direct ARIMA method is

indistinguishable from that of unscaled ARIMA(0,0.415,0).

A di�erent view point of comparing the simulated sequences to the real trace

data is to compare their average rate and peak rate. Figure 6-5 and �gure 6-6

show average rate curve in bits/sec of the trace data and ARIMA(0,0.415,0) time

series generated both by the direct ARIMA method and the Hosking method.

Average rate is measured over a window of every four frames. Mean average rate

is an average over the average rate of each window size. Peak rate is the maximum

value of all the average rates. We can see from the plot that both simulated data

matches well with the mean average rate but not the peak rate.
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Figure 6-5: Average rate processes of video trace data versus ARIMA(0,0.415,0)
generated by the direct ARIMA method. Window size is 4 frames
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Chapter 7

Performance Simulation of

Long-Range Dependent Tra�c

The ultimate goal of modeling of the self-similar/long-range dependent tra�c is

to study network performance using the simulated model and understand the be-

havior and e�ect on the network. Since the self-similar phenomenon is newly

observed in telecommunication tra�c and since such tra�c does have very dif-

ferent statistical properties than the conventional models, it is of great interest

to see what signi�cant di�erence does it make on the network performance and

under what conditions are these di�erences evident.

From our earlier discussion in section 2.5, simulation of aggregated LAN traf-

�c in a SMDS environment conducted at Bellcore reveals that overall packet loss

decreases very slowly with increasing bu�er capacity, in sharp contrast to Poisson-

based models where losses decrease exponentially fast with increasing bu�er size.

Packet delay (95 percentile) on the other hand, always increases with bu�er ca-

pacity, again in contrast to the formal models where delay does not exceed a �xed

limit regardless of bu�er size.

With the "Star Wars" data aquired from Bellcore and our corresponding sim-

ulated ARIMA(0,0.415,0) process, we are able to simulate performance for both
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processes for loss, delay and delay variance using Block Orienated Network Simi-

ulator tools (BONeS) and hence test Bellcore's claim.

7.1 BONeS Simulation Model

The simulation performance measures considered are cell loss ratio (CLR) versus

bu�er size, cell delay versus bu�er size and delay variance versus bu�er size. The

system environment is simply four video sources aggregated into a single FIFO

queue.

One system uses "Star Wars" trace data in bits/frame as the video source

tra�c. The other system takes the corresponding simulated ARIMA(0,0.415,0)

process in bits/frame as its video tra�c source. Before the four sources merge into

one queue, an ATM segmenter is used for each source to break the video packet

into cells. Both the source module and the segmenter module are obtained from

a previous project [23].

Figure 7-1 provides the diagram of the BONeS system model.

Source data are read from �les. Although we have only one video trace data

available that contains 171,000 frames, we can make four pseudo independent

sources out of it by reading the same �le beginning at a di�erent point for each

source. In our case, the �rst source reads from the beginning of the �le. The

second source starts from 25% o�set of the beginning and wraps back to the

beginning when the end is reached. The third and fourth sources start from 50%

o�set and 75% o�set of the beginning respectively and wrap around if necessary.

The same thing is done to the simulated ARIMA(0,0.415,0) process.

Note however, the resultant aggregated source is a periodic source. The period

is 25% of the �le. This is because by the time the last source reaches the end of the

�le, all the sources have gone through 25% of the �le from their starting points.

Subsequently, the �rst source will continue reading in data from 25% o�set where
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Figure 7-1: Simulation model of aggregated video source over a single queue

the second �le started. The second source will go on from 50% o�set, where the

third source started, etc. Thus forms the second cycle of the period. In fact, this

periodicity does not provide any more information than the �rst cycle. Therefore,

the fourth source is made slightly di�erent from all the other sources in such a way

that the simulation will be terminated after it reaches the end of the �le, which is

also the end of the �rst cycle. This still provides su�cient data for testing. The

start time of reading the �le is set to be a uniform random number for each source

so that simultaneous arrivals are avoided.

After each video packet in bits is broken into cells and leaves the segmenter,

they are routed to the FIFO queue. Total number of cells that go into the queue

is collected and written into a �le and updated upon the issuing of a uniform

pulse. Cells that are rejected by the queue are considered to be lost. Similarly,

the number of losses is collected and written into a �le upon the issuing of the

uniform pulse.
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Table 7.1: Parameters for BONeS Simulation

Source Parameters Values

Video File 1 Start 1st frame

Video File 2 Start 42750th frame

Video File 3 Start 85500th frame

Video File 4 Start 128250th frame

Slice=0/Frame=1 1

Segmenter and FIFO Parameters Values

Max Frame Size (bits) 627672(trace)/436047(ARIMA)

Segmenter Processing Delay 0.15 msec

Router to DSU Link Rate (Segmenter Input Rate) 13.25 Mbps

DSU to Access Line Link Rate 7.36 Mbps

Output Line Capacity(bps) 29.46 Mbps

Non-Cut Through Segmenter? 1 (Cut-through)

Maximum Queue Size 100 cells to 300 cells

Load 0.8

Two probes were used. A Generic Probe was used to record the history of the

cell losses. A Batch Statistic Probe (F2-F1) was used to calculate the cell delay

and delay variation statistics.

Bu�er size is a simulation parameter in our simulation. The range of interest

is from 100 cells to 300 cells with an increment of 50 cells. The other simulation

parameters are listed in Table 7.1.

Since the segmenter was obtained directly from a previous project, the name

of the parameters remained unchanged. \Router to DSU Link Rate" is in fact

the rate at which video packets are input to the segmenter. This rate is set to be

greater than the source arrival peak rate so that no loss should occur. \DSU to

Access Line Link Rate" is actually the output rate of the segmenter after packets

are segmented into cells. In order to let cell loss event occur, the link rate of the

FIFO is set to be four times of the output rate of a single segmenter, that is, the

total output rate of four segmenters are the same as the FIFO link rate, which
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is the \Output Link Rate" of value 29.46 Mbps. Once the source average arrival

rate is known (provided in chapter 6, �gure (6-5), (6-6)), with the desired load,

the average output link rate is simply determined. The \Load" for our simulation

is set to be 80%.

Another important parameter in our simulation is the simulation time, namely,

TStop time. From a statistical point of view, we wish to run the simulation as

long as possible subject to the 25% �le limitation discussed above. However,

we estimate that it would take about one week to �nish the simulation even if

the machines were under low load. Because of the limited resources and time, we

reduced simulation time to be 500 simulation time units (500 seconds). Thus each

source covers about 7.6% of the �le. These simulations required about two days

to �nish. We may not obtain accurate statistics with this amount of samples, but

we can expect reasonable results for comparing the system with video trace data

to the system with simulated ARIMA(0,0.415,0). Further, we can learn about

the changing tendency of CLR, delay and variance versus bu�er size.

7.2 Results and Discussions

Ten simulations were run in total, �ve for the video trace data and �ve for the

simulated ARIMA(0,0.415,0). They correspond to bu�er size 100, 150, 200, 250

and 300 cells respectively. Simulation parameters are set to be the same for both

cases except for di�erent global seeds. Since TStop=500 time units is not a long

time, results from di�erent simulations with di�erent global seed vary randomly.

In order to be able to compare among di�erent simulations, we set the global

seed to be the same within each �ve simulations. Now, let us look at the cell loss

history of both cases. Figure 7-2 shows the comparison of loss history of both

cases.

Clearly, the history of the two cases are di�erent. The trace data ((b)-1 and
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(a)-2. Loss history of ARIMA(0,0.415,0) process with bu�er size=200
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(b)-2. Loss history of video trace data with bu�er size=200

Figure 7-2: Comparison of cell loss history of video "Star Wars" trace data and

the simulated ARIMA(0,0.415,0) process
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Figure 7-3: Cell Loss Ratio of video trace data and ARIMA(0,0.415,0) versus
bu�er size

(b)-2) is more burstier in the sense that loss events happen heavily in a short

peorid of time, i.e., losses happen in a big burst followed by a blank gap where no

loss event occurs. Loss events of the simulated ARIMA(0,0.415,0) process, on the

other hand, occur in a less bursty manner, but more continuously across a large

time duration. As the bu�er size increases, losses tend to appear in a larger and

more isolated chunks.

This is consistent with the correlation functions that is shown in �gure 6-3

and the rate processes shown in �gure 6-5, where we can see that the simulated

ARIMA(0,0.415,0) process is smoother than the trace data. Therefore its data

structure is more correlated throughout the whole �le, while the trace data is

more correlated in a piecewise manner.

Figure 7-3 shows the comparison of cell loss ratio (CLR) versus the bu�er size

for two cases in a logarithmic scale. From our discussion in the previous section,

if cell decreases exponentially fast with the increase of bu�er size, we should
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see a linear curve in a logarithmic scale. Obviously, both curves are nonlinear,

which means that CLR decreases more slowly than exponential with increasing

bu�er size as expected. This demonstrates that the CLR behavior of self-similar

processes is indeed di�erent from that of the conventional models.

Figure 7-4 and 7-5 show the delay and the delay variance for both cases.

Clearly, both cell delay and its variance increase with increasing bu�er size. From

�gure 7-4, it is not obvious that delay with increasing bu�er size will not reach

a limit. On the hand, the delay varince in �gure 7-5 seems to increase with

increasing bu�er size. However, our simulation is relative short time and also the

maximum bu�er size is only 300. If we run longer time and get more points for

the simulation, we may expect to see a di�erent and more accurate results.

Again, the di�erence in the trace data and the simulated data is the result of

imperfect modeling. In particular, the peak rate of the ARIMA(0,0.415,0) does

not match that of the video trace data.
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Chapter 8

Conclusions and Future Work

This thesis has made the following contributions.

(1) It presented a systematic way of modeling the most recently discovered self-

similar/long-range dependent telecommunication tra�c using the ARIMA(p,d,q)

self-similar process. The approach includes modeling of ARIMA(0,d,0) as the

�rst step and the modeling of ARIMA(p,d,q) process on top of that. This method

allows simulated self-similar or long-range dependent tra�c to be generated in

a workstation based environment with a reasonable time duration. Therefore

simulated sample data can be easily available for performance study.

(2) Basic understanding of the characteristics of long-range dependence was

provided through the process of modeling. In particular, since long-range depen-

dence in principle di�ers greatly from short-range dependence, their statistics and

measurement depend greatly upon the amount of data being observed.

(3) Performance simulation of video trace data and the corresponding simu-

lated ARIMA(0,d,0) process provided evidence of their di�erence from convention

models in terms of cell loss versus bu�er size, cell delay and variance versus bu�er

size.

The modeling method in this paper assumes that trace data can be modeled

directly by ARIMA(p,d,q) process. However, for real tra�c this assumption will
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not hold exactly in most cases. We can only expect that real tra�c possesses

long-range dependence, namely, very persistent correlations, but they may not be

typical ARIMA process. The best example we have seen is the video Starwar's

trace data in bits/frame, where the correlation structure appears to be irregular

at many places.

Much work can be done in order to get a model that matches better than just

the long-range dependent feature. Maximum likehood method can provide general

purpose of modeling when speci�c feature is well de�ned. Filtering the noisy part

of the trace data may help us focus on long-range dependent characteristics and

get a clearer idea about the network e�ects contributed only by the long-range

dependency. More attention should be given to the study of long-range dependent

phenomenon in the performance of high speed network when good models are

available. Simulation can provide essential information on that. Protocols and

engineering of future high speed networks that provide service to self-similar tra�c

can be signi�cantly a�ected by the knowledge obtained from simulations.

As a conclusion, Long-range dependence in telecommunication tra�c is not a

unique phenomenon. Long-range dependence is gaining more and more attention

in statistics, since it has be observed in many areas and it has shown signi�cant

e�ect on statistical inference. Due to the vast number of examples from hydrology

and geophysics, long-range dependence is recognized by most hydrologists and

geophysicists to be the rule rather than the exception [2]. Whether it is also true

in telecommunication tra�c or not still need to be seen. Intuitively we believe

that their di�erent e�ect on network performance than our conventional idea is

not negligible and yet to be studied and understood thoroughly.
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