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Since the publication of [3], the popular belief is that the
high variability in traffic is due to the long-range depen-

Abstract— In this paper, we propose a novel and mathemati-
cally rigorous measure of variability, called theindex of variabil-

ity (Hy(1)), that fully and accurately captures the degree of vari- : eSS
ability of a typical network traffic process at each time scale and dence(LRD) property of the traffic proc - In generdl, a

is analytically tractable for many popular traffic models. Using (weskly) stationary discre’Fe-ti mereal-valued Stocha;ticproczeﬁs
this proposed measure, we then analyzed two traffic models: the Y = {Yn,n=0,1,2,...} withmean u= E[Y;] and variance 0~ =
Two-State Markov Modulated Poisson Process (MMPP) and the E[(Y, — p)z] < o is long-range dependent if 3’ ;r(k) = oo,

renewal process with hyperexponential interarrival time distribu-  \yhere r (k) measures the correl ation between samples of Y sep-
tions of order two (RPH2). Two-state MMPP models are popular

in modeling the superposition of packet voice streams. The re-

arated by k units of time. If 3 ;r(k) < o, thenY is said to

sults show that the traffic variability can exhibit a non-monotonic  €xhibit short-range dependence (SRD).

behavior. In addition, the results suggest that renewal processes

with interarrival times hyperexponentially distributed are suitable
for modeling network traffic processes with high variability over a
broad range of time scales.

I. INTRODUCTION

Many empirical studies have shown that Internet traffic ex-
hibits high variability® [1][2][3][4]. That is, traffic is bursty
(variable) over a wide range of time scales in sharp contrast to
the assumption that traffic burstiness exists only at short time
scales while traffic is smooth at large time scales [3]. High
variability in traffic has been shown to have a significant impact
on network performance [5][3]. The results from [5][6][7][8]
show that knowledge of the traffic characteristics on multiple
time scales helps to improve the efficiency of traffic control
mechanisms. Importantly, the design and provision of quality-
of -service-guarantees over the Internet requires the understand-
ing of traffic characteristics, such as variability.

IFluctuation of traffic as a function of time.

Common traffic models with LRD are based on self-similar
processes. Intraffic modeling, theterm self-similarity isusually
used to refer to the asymptotically second order self-similar or
mono-fractal processes [9]. The definition of asymptotically
second order self-similarity is as follow [3]: assume that Y
has an autocorrelation function of the form r(k) ~ k BL(k) as

k — o0, where 0 < 3 < 1 and thefunction L is slowly varying at
kx

infinity, i.e., iMoo % =1V¥x>0. Foreachm=1,2,3,...,
let Y = £v{™ n=1,23,...} denote anew aggregated time
series obtained by averaging the original series Y over non-
overlapping blocksof size m, replacing each block by its sample
mean. That is, foreachm=1,2,3,..., Y™ isgiven by

y(m _ Yom-m+1+ -+ Yoam
oo m

n>1. D

The new aggregated discrete-time stochastic process Y (™
is also (weakly) stationary with an autocorrelation function
rM (k). Then, Y is called asymptotically second order self-

similar with self-similar parameter H = 1 — % if for al k large
enough, r(M (k) — r(k) asm— . That is, Y is asymptoti-



cally second-order self-similar if the corresponding aggregated
processes Y (™ become indistinguishable from Y at least with
respect to their autocorrel ation functions. By definition, asymp-
totically second order self-similarity implies LRD and vice
versa[9].

The parameter H is called the Hurst parameter. For gen-
eral self-similar processes, it measures the degree of “self-
similarity”. For random processes suitable for modeling net-
work traffic, the Hurst parameter is basically a measure of the
speed of decay of the tail of the autocorrelation function. And
if 0.5 < H < 1, then the processis LRD, and if 0 < H < 0.5,
thenitis SRD. Hence, H iswidely used to capture the intensity
of long-range dependence of atraffic process, the closer H isto
1 the more long-range dependent the traffic is, and vice versa
[9].

There are several methods for estimating H from a traffic
trace. One of the most widely used is the Aggregated Variance
method: for successive values of mthat are equidistant on alog
scale, the sample variance of Y(™ is plotted versus m on alog-
log plot [10][11]. By fitting a least-square line to the points of
the plot and then calculating its slope, an estimate of the Hurst
parameter isobtained as H = 1 — 992

Another very popular method is based on wavelets [12].
Given a traffic trace Y, the Hurst parameter can be esti-
mated as follows. For each scale j, the wavelet energy | =
Nijznjzldz(j,k) is plotted versus j on a semi-log plot (i.e,
logz(1;) vs. j). By fitting aleast-square line to the points of
the curve region that looks linear and then computing its slope
o, H isestimated asH = 442,

A. Need for a New Measure of Variability

Commonly used measures of traffic burstiness, such as the
peak-to-mean ratio, the coefficient of variation of interarrival
times, the indices of dispersion for intervals and counts, and the
Hurst parameter, do not capture the fluctuation of variability
over different time scales.

It is claimed in [3] that the Hurst parameter is a good mea-
sure of variability, and the higher the value of H, the burstier
the traffic. However, we believe that the Hurst parameter does
not accurately capture the variability of network traffic over
al performance relevant time scales. The popular belief from
early studies [13][5][14][15] on the impact of LRD on network
performance is that high values of the Hurst parameter are as-
sociated with poor queueing performance. But, later studies
[16][7] show examples in which larger values of H are asso-
ciated with better queueing performance compared to smaller
values of H. In addition, the results in [8] indicate that the
gueueing performance depends mostly on the variability over
certain time scales rather than on the value of H. Moreover,
it is known [6] that different long-range dependent processes
with the same value of the Hurst parameter can generate vastly
different queueing behavior. Clearly, the single value Hurst pa-
rameter does not capture the fluctuation of the degree of traffic
burstiness across time scales, regardless if the traffic process
exhibits LRD or SRD.

For many network traffic processes, the wavel et energy-scale
or variance-time plots usually do not tend to straight lines, i.e.,

Fig. 1.
310-0.

logo (M) versus scale j for the Auckland-1V treffic trace 20010301-

see Fig. 1 (For information about the Auckland traffic traces,
see [17].). Usualy many of these processes have piecewise
fractal behavior with varying Hurst parameter over some small
ranges of time scales [18]. Such processes are usually referred
to as multi-fractal processes[19].

Queueing performance greatly depends on traffic irregular-
ities at small time scales which are believed to be due to
the complex dynamics of data networks [6][20]. Multifrac-
tal analysis based on the legendre spectrum is often used to
study the multiscaling behavior of traffic at small time scales
[18][21][22][23]. The process of estimating the legendre spec-
truminvolveshigher order sample momentsand negative values
of moments. It isknown[24] that higher order sample moments
are not well-behaved and negative val ues of momentstend to be
erratic. In addition, the legendre spectrum is difficult to inter-
pret [25].

Hence, there is a need for an intuitively appealing, conep-
tually simple, and mathematically rigorous measure which can
capture the various scaling phenomenathat are observedin data
networks on both small and large scales [26].

In this paper, we propose a novel measure of variability,
called the index of variability (Hy(T)), that fully and accurately
captures the degree of variability of a typical network traffic
process at each time scale and is analytically tractable for many
traffic models.

The rest of this paper is organized as follows: In Section I,
wedefinetheindex of variability. In Section 111, weanaytically
obtain theindex of variability curvesfor two traffic models, and
we concludein Section V.

Il1. INDEX OF VARIABILITY FOR PACKET TRAFFIC
SEQUENCES

Let N(t) denote the number of events (packet arrivals) of a
stationary point processin theinterval (0,t]. For each fixedtime
interval T > 0, an event count sequence Y = {Yy(1),T > 0,n=
1,2,...} can be constructed from each point process, where

Ya(t) = N[nt] = N[(n— 1)1] @

denotes the number of events that have occurred during the nt
time interval of duration 1. Clearly, Y is also (weskly) station-
ary for al T > 0. In this study, Y represents a network traffic



trace where Y, (1) denotesthe number of packets observed from
an arbitrary point in the network during the nt time interval of
duration T. Werefer T as the time scale of the traffic trace, and
it representsthelength (i.e., 10ms, 1s, 10s, e.t.c.) of one sample
of Y.

The expected number of eventsthat have occurred during the
interval (0,t] isaways: E[N(t)] = ﬁ = At where E[X] is the
expected interarrival time and A is the mean event (packet) ar-
rival rate. The index of dispersion for counts (IDC) is defined

as IDC(t) = ‘F{H = L. The IDC was defined such

that it provides some comparl son with the Poisson process, for
which IDC(t) = 1 Vt. Note that since the point process is sta-
tionary, IDC has the same value over any interval of length t.
Hence, t can be viewed as the time scale T of the traffic process
Y definedin (2). From now on we will beusing t to denote gen-
erality and T to denote time scales, i.e., the time length of each
sample of the packet-count sequence.

An important feature of IDC is that it is mathematically
equivalent to the Aggregated Variance method for estimating
the Hurst parameter H of a self-similar process. For a self-
similar process, plotting log(IDC(mt)) against log(m) results
in an asymptotic straight line with dope 2H — 1. When Y is
a long-range dependent process, the slowly decaying variance
property of LRD processes [3] with parameter 0 < B < 1 is
equivalent to an IDC curve? with an asymptotic straight line
with slope 1 — 3, implying 0 < slope < 1. When the IDC
curve converges to an asymptotic straight line with slope =0
for some 1 < o, then Y is a short-range dependent process.
Based on the above property of IDC, we define the following
new measure of variability:

Definition 1: For ageneral stationary traffic processY as de-
fined by (2) whose | DC(1) is continuous and differentiable over
(0, 0), we call

d(log(IDC(v))) , 9
Ho(1) = —20L— 3)
the index of variability of Y for the time scale 1, where
W isthe local slope of the IDC curve at each T when
plotted in log-log coordinates.
Note that theindex of variability isso defined in order that for
a long-range dependent (asymptotically or second-order self-
similar) process Hy(t) = H € (0.5,1) for al 1 > 10 > 0. The
value of 1, depends on the particular process. If the processis
exactly self-similar then Hy(t) =H € (0.5,1) forall T > 0. That
is, if log(1DC(1)) is linear with respect to log(t1)), then Hy(T)
reducesto H. The Index of Variability can be thought of as the
Hurst parameter defined at each time scale.
In general®, the process Y exhibits significant variability
for those time scales T such that 0.5 < Hy(T) < 1. When

W — 1, then Hy(T) — 1 implying very high variabil-
ity. A plot of Hy(t) versus T would depict the behavior of the
traffic processY in terms of variability (burstiness) at each time

scale T (= 10ms, 100ms, 1s, ...).

2In log-log coordinates.

3The generality here is confined for those processes that are suitable in mod-

eling network packet traffic.

Expanding the local slope of the IDC curve at each time

scale, we get
d(log(IDC(1))) T d(IDC(1))
d(log(1)) ~IDC(1) dt
_ T d(var[N(m)])
~ Var|N(1)] dt -1 @

Using the above in (3), we obtain a more convenient form of
the Index of Variability:

dvar[N(1)]
Hy(t) = 05t (Var[ ()]>
(

1 d(0C(r)
- E{H (IDC(I))} ®)

In addition, setting T = mT, whereT >0and m=1,2,---, and
using the relation Var[Y(™] = \% we can express the
index of variability function in terms of Var[Y (™] versus m:

dvar]Y(m]

=05m—am__ 11 6
mVar[Y(m)] * ©)

Hy(mT)

Supposenow Y is an aggregate sequence of packet countsre-
sulting from the superposition of M independent packet-traffic
sources, not necessarily identical. Then N(t) = Ny(t) +--- +
Num (t), where N;(t) denotesthe number of packet arrivalsin the
interval (0,t] from the it" traffic source. Assuming again sta-
tionarity, we have

IDC(t) =

M :
OS5 o

where A; is the mean packet arrival rate from the it source,
M 5
and Ay = 2520 10 addition, DS _ loo3isy VTN () _

" log(t)
%, and upon taking the derivative in respect to log(t)

we get the index of variability for the aggregate traffic stream
to be
M dvar[Ni(1)]
0.5t ZI_—
S, Var[Ni(1)]

z|M= d(|DCE(T)) 1
%{1+T< M (d|DQ()()A)>}' ®)

As we can observe from (8), the variances or the in-
dices of dispersion for counts of the M independent
point-processes completely characterize the variability func-
tion of the aggregate packet-count sequence Y. If

lime1DO(T) = lime o (313 (P52)) = c < eo, then ob-
viously, limy_,. Hy(t) = 0.5. In case that al M underlying

point processes of making up Y are also identical, then (8) re-
ducesto (5). If al M underlying point processes are Poisson,

then W = 0for al T and i and hence Hy(t) = 0.5 for all
T.

Hy(t) =




I1l. ANALYSIS OF TRAFFIC MODELS

In this section, we obtain the index of variability functions
for two traffic models: the Two-State Markov Modulated Pois-
son Process (MMPP) and the renewal process with hyperex-
ponential interarrival time distributions of order two (RPH2).
MM PP models are very popular traditional model which yield
SRD traffic processes. Two-state MMPP models are popular in
modeling the superposition of packet voice streams [27]. As
shown below, such models can be used to capture the high vari-
ability of traffic over arange of small time scales.

Thework in[28] showsthat long-tail distributions can be ap-
proximated by hyperexponentional distributions. Thus, we be-
lieve that renewal processes with hyperexponential interarrival
time distributions are suitable for capturing the high variability
of traffic over any range of (short or long) time scales. In addi-
tion, amajor advantage of these modelsis their relative ease of
analytically obtaining queueing performance predictions.

A. Two-Sate Markov Modul ated Poisson Process (MMPP)

Here we consider that the underlying point processof Y isan
MMPP with two-state Markov chain where the mean sojourn
timesin state 1 and 2 are a1 and B2, respectively. When the
chainisin statei (i = 1, 2) the point processis Poisson with rate
Ai. Lettingp = a + B and u = A 13 + A20, we have from [27]

that E[N(t)] = % and IDC(t) = 1+ pA—A(lff’p‘), where

A= %JAZ)Z. Itis easy to see that lim;_,. IDC(t) = 1+ pA.
Upon taking the derivative of IDC(t) we obtain the index of
variability of Y as

Hv(T)ZO.5{1+ All-(1+pre ™) }

(1+pA)T-AL—ePT)

Numerical Results: Assume a~! = B~ = 100 seconds,
A1 = 4 packets/second and A, to vary from 1 to 1000 pack-
ets/second. Plots of Hy(1), are shown in Fig. 2. Notice that
when A2 = A1, we have a pure Poisson process and therefore
zero variability. But as the difference between A1 and A in-
creases, so doestheindex of variability. Based on the two plots
of Fig. 2, we observethat theindex of variability increases with
A2 up to its maximum value, and any further increasein A, does
not have any affect on variability. We also observe that the in-
dex of variability increases with T up to its maximum value and
then decays with an exponential rate. But most importantly, we
observe that for values of A2 not very close to Aj, the packet-
count processY has substantial variability over awide range of
time scales that spans about 200 seconds.

B. Renewal Processes with Interarrival Times Hyperexponen-
tially Distributed

We assume here that the underlying point processes of Y
are stationary renewal processes with interarrival times hyper-
exponentially distributed. We call this model as the hyperex-
ponential model. A hyperexponential distribution of order K,
(=1,2,3,...), is the weighted sum of K exponential distribu-

tions:
K

Fc(X) =PrixX <x = Zw (1-e ) (9)

Fig. 2. Index of Variability for The Two-State MMPP: a1 = =1 = 100
Seconds, A1 = 4 Packets/Second.

wherew; > 0 are theweights satisfying T, wi = 1, and a; > 0
aretherates of the exponential distributions [33]. It was shown
in [29] that if wi =w and a; = n—“, forO<w<1,n>1, and
K> 0O, then the tail of the hyperexponential distribution gets
longer and longer with K. The advantages of the hyperexpo-
nential distributions over heavy-tailed distributions like Pareto
are two-fold: their Laplace transform exists, therefore they can
be utilized in analytic models, and they have finite variance for
al K. The hyperexponential distribution defined in Equation 9
isused in the simulation study in [30] for different values of K
up to 64. In that study, a Poisson process is merged with are-
newal process for which the interarrival times have this specia
hyperexponential distribution which was developedin [29]. For
K =64, 0= —% = 1.4, Myperexponential = gy = 1, and
Apoisson = [0.1,0.7], the autocorrelation function appears linear
for more than 8 orders of magnitude when plotted in log-log
coordinates, suggesting LRD behavior over a very broad range
of time scales. Here we analytically obtain the variability index
of thetraffic processY only for the case of K = 2 for any values
of wi and ai, (i = 1,2). We leave the cases of K > 2 for future
work.

Since the underlying point processes of makingup Y arein-
dependent from each other, it is sufficient to obtain the variance
of the aggregate counting process N(t), and thus the index of
variability and autocorrelation function, by considering only a
single renewal process with hyperexponential interarrival time
distribution of order two.

Lettinga = a; and b = a», the pdf of theinterarrival timesis
then

fo(x) = wiae -+ wobe ™. (10)
The mean packet arrival rate is A = 2%, and the squared

coefficient of variation of the interarrival times is C%(X) =



2 2, e .
[%] — 1. In addition, limy,0C2(X) = 1 and
limp_,0C?(X) = Z — 1. AsshowninFig. 3, for constant values

W2

10*

c*x)

10 = 6 5 ” 3 2
10 10 10 10 10 10

10°
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Fig. 3. Sqguared Coefficient of Variation of the Interarrival Timevs. vg for the

Case of Hyperexponential Distribution of Order Two: a = 100, (a) b = 0.01,

and (b) b = 0.0001.

of a and b, C?(X) increases exponentially up to its maximum
value and then decreases to one very abruptly. The maximum
value depends on the value of b, and as shown by these two
plots, it can get extremely high.

It can be shown that [31]
_ 2\[(awy + bwp)? — (2w + bw,)]
VariN(®] = (aws + bwy)3
(1 _ e—[aW2+bWﬂ‘) FACZ(X)t, (1)
and
_ 2[(awr + bwp)? — (aPwy + bPws)]
IBC(t) = (aw; + bwy)3
_ a—[awo+bwt
G e R

Observe that limy_, IDC(t) = C2(X). Equation (11) or (12)
can then be used in (5) to obtain the index of variability. It is
obviousto seethat lim;_,. Hy(T) = 0.5.

Numerical Results: Let a = 100. Table | lists the values of
the mean packet rate (A) and the squared coefficient of variation

TABLEI
VALUES OF MEAN PACKET RATE (A) AND SQUARED COEFFICIENT OF
VARIATION OF INTERARRIVAL TIMES (C?(X)) FOR THE NUMERICAL
EXAMPLE OF THE CASE OF HYPEREXPONENTIAL DISTRIBUTION OF
ORDER TwoO: a = 100.

A (packets/sec) C?%(X)
Wa b=001 b=0.0001 b=0.01 b = 0.0001
1073 9.1000 0.0999 1.6522x10°  1.9950x10°
104 50.0000 0.9901 5.0000x10°  1.9605x10%
107° 90.9000 9.0909 1.6536x10°  1.6529x10°
1076 99.0000 50.0000 197.0202  5.0000x1CP
107 99.9000 90.9091 20.9561 1.6529x1CP
1078 99.9900 99.0099 2.9992 1.9607x107
1079 99.9990 99.9001 1.2000 1.9970x1C°
1071 | 99.9999 99.9900 1.0200 200.9596
10-TT | 100.0000 99.9990 1.0020 20.9996
10-2 | 100.0000 99.9999 1.0002 2.9999
10~ | 100.0000 100.0000 1.0000 1.2001

of the interarrival times (C2(X)) for b = 0.01 and b = 0.0001
for different values of wo. Note that wy +wo = 1. Interest-
ing, the maximum value of C2(X) occurs when A = 8. Also,
Fig. 4 indicates that at this value of A the process attains the
widest range of time scales of high variability, and in thisrange
the index of variability reaches its maximum value (curve (i),
maximumH, = 0.9988). Observe that this widest range of time

10 10" 10° 10 10
T (seconds)

Fig. 4. Index of Variability vs. Time Scale for the Case of Hyperexponential
Distribution of Order Two: a= 100, b= 0.0001, wo = (i) 107° (ii) 1077 (iii)
1078 (iv) 1072 (v) 10710 (vi) 10~ (vii) 10712,

scales of high variability most likely covers all time scales that
impact network performance evauation [6]. In this example
andfor A = § packets/s, therange of time scales that the packet-
count sequenceY exhibitshigh variability spans 7 order of mag-
nitude. If this traffic processY is observed only for these time
scales, then Y will be viewed as long-range dependent (LRD)

process.

In addition, Fig. 4 showsthat the maximum value of variabil-
ity as well as the range of time scales of substantia variability
becomesmaller asA — a. Let

Ton = inf{range of time scales of substantial variability},



and

Toff = sup{range of time scales of substantial variability}.

As we can see from these curves, Ty, gets bigger as A ap-
proachesa. Although it is not completely shownin Fig. 4, it is
not difficult to see that 1o¢t becomes smaller asA — b. Notice
that for al T 3 [Ton, Tof ] the process looks like Poisson.

Clearly, the aboveresults show that the hyperexponential dis-
tribution can be used to model the interarrival distribution of
highly bursty packet traffic. Specifically, the results indicate
that thistraffic model can capture traffic burstiness over abroad
range of time scales. A major advantage over models that uses
heavy-tailed distributions is that with this model the exact de-
gree of variability at each time scale can be measured.

IV. CONCLUSION

All commonly used measures of traffic burstiness do not
capture the fluctuation of variability over different time scales.
Therefore, we developed a novel and mathematically rigorous
measure of variability, called the index of variability (Hy(T)),
which can capture the various scaling phenomenathat are ob-
served in data networks on both small and large scales [26].

Using this proposed measure, we then analyzed two traf-
fic models: the Two-State Markov Modulated Poisson Process
(MMPP) and the renewal process with hyperexponential inter-
arrival time distributions of order two (RPH2).

The results show that conventional traffic models can capture
the high variability observed in network traffic over a consider-
able range of time scales. We show that a synthetic packet traf-
fic process generated by using the two-state MM PP can exhibit
a substantial variability over a wide range of time scales that
spans 200 seconds. In addition, the results show that the index
of variability can fully capture the multifractal behavior of traf-
fic processes, especially at small time scales. The results also
suggest that renewal processes with interarrival times hyperex-
ponentially distributed are suitable for modeling highly bursty
network traffic processes.

We are currently working in developing (a) a procedure for
estimating the index of variability from empirically measured
traffic traces and (b) a method of fitting analytically obtained
index of variability curves from the hyperexponential model to
the curves estimated from traffic traces.
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