
International Journal of Web Services Practices, Vol. 5, No.1 (2010), pp. 1-9

ISSN 1738-6535 © Web Services Research Foundation

1

Abstract— Service Oriented Architectures can be quite complex

which makes managing and monitoring them hard. Message
exchanges as well as complete message flows are important when it
comes to analyzing the performance of systems and identifying
problems. The use of SOAP as the common message format for
web services enables interoperability and extensibility.
Furthermore it can be used for logging and analysis because its
components follow web service specifications. We present a
framework that allows for logging, analyzing and visualizing these
messages across a distributed system.

The proposed framework consists of a flexible logging module
that captures incoming and outgoing messages of a web service.
The log parsing library provides various methods for normalizing,
correlating across geographically distributed sites and analyzing
messages. The visualization tool is able to display relationships
between the web services as well as message flows.

In utilizing this adaptable framework for analyzing SOAP
messages it is possible to overcome the challenges of complexity
and disparity that monitoring and management approaches face in
web service environments

Index Terms—Logging, Log analysis systems, Visualization,
Transport protocols, Data communication, Software

engineering

I. INTRODUCTION
HE use of Service Oriented Architectures (SOA) in

application systems is widespread. The idea is to implement
specific functionality in web services that communicate with
each other using standardized interfaces. Message exchanges in
general use the flexible SOAP message format [1]. This has a
number of advantages as for instance message routing and
security are available as extensions to it. However, in many
cases and especially in geographically distributed systems as
shown in Figure 1, there exists no simple way to analyze and
visualize the message flow through the entire system as well as
measuring performance of components in order to identify
potential bottlenecks.

This paper describes a framework that is able to analyze a
variety of timing measurements such as message transmission

M. Kuehnhausen and V. S. Frost are with the Information and
Telecommunication Technology Center, The University of Kansas, Lawrence,
KS, 66045, USA; e-mail: mkuehnha@ittc.ku.edu and frost@ittc.ku.edu

This work was supported in part by Oak Ridge National Laboratory
(ORNL)—Award Number 4000043403. This material is also partially based

upon work supported while V. S. Frost was serving at the National Science
Foundation.

and service processing times. Furthermore it correlates
messages which can then be used to analyze message flows.
Finally a graphical user interface is presented that allows the
visualization of individual system components and their
message interactions.

II. PROBLEM AREA
Web service environments consist of disparate systems and

technologies. In order to efficiently monitor and analyze
message flows the following areas need to be addressed.

A. Logging
Chuvakin et al. [2] explain that logs often contain “valuable

information about systems, networks, and applications”. In
particular logging is important when it comes to auditing
because laws often mandate so-called audit trails, for example
in the health industry and the banking sector. Another important
observation that Chuvakin et al. make is that logging in
distributed systems needs to be addressed differently as web
services “are by their nature distributed across multiple systems,
disparate technologies and policies, and even organizational
domains”. This means that logging needs to be addressed on a
global basis either with a centralized logging server or with a
common logging format that is used by each individual service.

B. Analysis
Apart from auditing purposes log file analysis is often used to

study or detect failures in systems. Furthermore usage and
bandwidth monitoring in distributed systems is important for
load balancing in order to keep costs down. Lim et al. [3] outline
particular aspects that need to be considered in logging systems,
in their case an enterprise telephony system, that allow efficient
and effective analysis.

They also note that one of the problems is that data in logs is
often unstructured and it is therefore hard to automatically
discover patterns. However, this is often solved by log
preprocessing such as message normalization and clustering.
After cleaning the logs data mining approaches such as finding
frequent item sets, frequency analysis and anomaly detection
may be applied. Furthermore data in logs can be correlated and
dependencies of messages can lead to message flow analysis. In
terms of performance analysis measurements such as processing
and transmission times are important.

Framework for Analyzing SOAP Messages
in Web Service Environments

Martin Kuehnhausen Graduate Student Member, IEEE and Victor S. Frost, Fellow, IEEE

T

International Journal of Web Services Practices, Vol. 5, No.1 (2010), pp. 1-9

ISSN 1738-6535 © Web Services Research Foundation

2

C. Visualization
Since there is often an abundance of data present it is not

necessarily easy to grasp important aspects or quickly analyze
data. This is especially true regarding message flows. While
time measurements and message statistics can easily be
represented using a table format, sequences and dependencies
need more complex structures such as graphs and trees.

III. RELATED WORK

A. Logging systems
Cinque et al. [4] propose an system that is based on specific

logging rules that allow “effective dependability evaluation of
complex systems”. By defining a common set of rules such as
service start, service end, entity (resource) interaction start and
end an observer is able to follow certain event flows. Given
estimated computation duration and considering potential
timeouts the system generates alerts whenever it detects a
problem in an event flow.

Vaarandi [5] introduces two compact log file analysis tools
called Simple Logfile Clustering Tool (SLCT) and LogHound
which apply two of the most common approaches to log analysis.
SLCT uses a density based clustering method that is able to
detect outliers while LogHound “employs a frequent itemset
mining algorithm”.

Makanju et al. [6] provide an overview of “network
information visualization tools” as well as propose their own
version called LogView. They are using a variety of techniques
such as plots and treemaps to visualize network traffic, intrusion
detection and application logs.

Logging web sessions that track specific users generates a lot
of data. In contrast to other logging systems the focus here lies
on analyzing flows and user behaviors. Session Viewer [7] by
Lam et al. is a visual tool that consists of various panels for data
aggregation, cluster and flows analysis. This allows a statistical

overview as well as detailed analysis of so-called session logs.
An approach that applies directly to web services is proposed

by Simmonds et al. [8]. They describe a runtime monitoring
system based on a subset of UML 2.0 Sequence Diagrams
which are used for checking conditions and messages exchanges.
After the constraints are correctly defined in sequence diagrams
they are handed over to a “monitoring manager” that receives
events from a “message manager” and checks those against the
events and flows specified. Simmonds et al. also discuss various
related work in terms of the difference in “offline” and “online”
monitoring as well as “global” and “local” property checking.
Their proposed system is able to efficiently check the
correctness of events and flows at runtime.

Service Oriented Architectures are inherently based on web
service specifications. These specifications clearly define
standard properties and functionality of web services that
implement a particular specification. Within a logging system
this leads to the ability of extracting information according to
these standards independent of how they are implemented and
in a flexible and extensible manner. This is not necessarily true
in most logging system that depend on a particular log format or
are specifically built for one particular purpose. Whenever more
information needs to be captured the log format needs to be
adapted in these systems while using a web service based
approach this is not necessary.

B. Web Service Specifications
In web service environments there are two common types of

message exchanges. The first is a one-way message transfer
from a service to another service or client which is often used in
notification scenarios. The second is a common two-way
exchange in which a request message is sent to a particular
service, the service then fulfills the request and sends out a
response accordingly. Apart from these basic message exchange
patterns it is possible to set up a subscription system and then
have a web service automatically deliver messages to a client.

Fig. 1. Geographically distributed services

International Journal of Web Services Practices, Vol. 5, No.1 (2010), pp. 1-9

ISSN 1738-6535 © Web Services Research Foundation

3

It is important to note that the messages themselves can be
encrypted in order to protect private information which can pose
issues when trying to analyze message flows. In the following
the web service specifications related to message exchanges,
subscriptions and security are discussed.

1) WS-Addressing:
The WS-Addressing core specification [9] and its SOAP

binding [10] defines how message propagation can be achieved
using the SOAP message format. Usually the transport of
messages is handled by the underlying transport protocol but
there are several advantages of storing this transport
information as part of the header in the actual SOAP message.
For example, it allows the routing of messages across different
protocols and management of individual flows and processes
within web services.

WS-Addressing uses so-called EndPointReferences which
are a collection of a specific address, reference parameters and
associated metadata that further describe its policies and
capabilities. The Addressing Header header fields defined by
the specification are the following:

· To which represents the destination of the message
· From contains the source, a so-called

EndPointReference
· ReplyTo specifies that in case of a response, a message is

supposed to be sent to this EndPointReference, which
might be different from the From field

· FaultTo defines the EndPointReference for the fault
message in the case of an error

· Action identifies the purpose of the message, in
particular the web service operation, and is the only
required field

· MessageID uniquely identifies every message
· RelatesTo references the MessageID of the request

message in request-response message exchanges; the
relationship can also be specified explicitly by defining a
so-called RelationShipType

2) WS-Eventing:

In order to allow for subscriptions to web services, the
WS-Eventing specification [11] has been defined. It describes
the process of establishing subscriptions as well as how the
subsequent publications are delivered to the subscribers. The
specification relies on WS-Addressing for the routing of
messages. The two main components of a subscription in this
specification are the Subscribe and the SubscribeResponse
message. After subscriptions have been created, publications
will be sent out accordingly.

a) Subscribe
The client that wants to subscribe to a particular web service

needs to define the following:
· The Action field of the WS-Addressing header is set to

http://schemas.xmlsoap.org/ws/2004/08/eventing/Subsc
ribe

· ReplyTo is the EndPointReference that receives the

response to this subscription request
· A MessageID that uniquely distinguishes multiple

requests from the same source
· EndTo defines an EndPointReference that is used when

the subscription ends unexpectedly
· Delivery contains the EndPointReferences that are to

receive the publications
· An Expires field that defines the expiration time of the

subscription
· Filter that by default defines an XPath expression as the

Dialect, but could be any form of expression that is
applied to potential publications in order to filter them

b) SubscribeResponse
The response to a subscription request is generated by the

so-called subscription manager. It sends back a message with
these fields:

· The Action field of the WS-Addressing header is set to
http://schemas.xmlsoap.org/ws/2004/08/eventing/Subsc
ribeResponse

· RelatesTo specifies the subscription request that this is a
response to

· SubscriptionManager that contains its own Address and
the unique Identifier for the subscription

· An Expires field that defines the expiration time of the
subscription

The WS-Eventing specification also offers message

constructs for the renewal, status retrieval and unsubscribing of
subscriptions. Additionally a so-called subscription end
message is automatically generated by the service that publishes
information in order to notify subscribers of errors or other
reasons for it being unable to continue the subscription.

It has to be noted that without additional specifications like
WS-ReliableMessaging the delivery of publications is based
purely on best effort and is not guaranteed.

3) WS-Security
The WS-Security specification [12] deals with the many

features needed to achieve so-called end-to-end message
security. This provides security throughout message routing and
overcomes the limitations of so-called point-to-point transport
layer security such as HTTPS. Furthermore, the specification
aims to provide support for a variety security token formats,
trust domains, signature formats and encryption technologies.

International Journal of Web Services Practices, Vol. 5, No.1 (2010), pp. 1-9

ISSN 1738-6535 © Web Services Research Foundation

4

IV. PROPOSED SOLUTION
The framework developed here allows the capture and

analysis of SOAP messages in one and two-way
communications as well as subscriptions. Logging these
messages that are based on web service specifications and
extracting information from them overcomes common problems
previous approaches faced such as the necessity of a common
log format across different platforms and the inability to extend
the system later to log more information without breaking
existing functionality.

The individual components are shown in Figure 2 and are
explained in the following sections. Note that the logging part is
positioned in between the message sender/receiver and the
security layer which makes it possible to capture message
information without compromising security functionality in the
web service environment.

A. Logging
The logging component that was developed as part of this

framework was initially designed to support a particular system,

the Transportation Security SensorNet (TSSN) [13]. However,
it can easily adapted to other systems. The TSSN is based on the
Axis2 web service stack which uses modules for implementing
web service specifications. While modules for WS-Addressing
and WS-Eventing come as part of Axis2, a module that
implements the desired logging functionality had to be
developed separately.

1) Logging Module
The logging module as described in the following provides

extensive logging capabilities to the web services. It was
engaged during development and testing of the entire TSSN
system since it logs all messages that are sent and received. In
addition, it also writes the raw contents of the SOAP messages
that are sent and received into log files. In particular the
following information is captured:

· Time when the message was sent or received
· Service which is used
· Operation that is being executed
· Direction of the message, which can be either incoming

or outgoing. Note that there are special directions that
· deal with incoming and outgoing faults.
· From address of the message
· Reply to address that may differ from the From address
· To address of the message
· Schema element that is being “transported” as part of the

operation containing the request parameters or the
response elements

· Size of the message in bytes
· Message which represents the entire SOAP message in a

readable form

In terms of analyzing the TSSN and its performance the

Fig. 2. Framework overview: logging, log parser and visualization (from left to right)

Fig. 3. SOAP message (left) to Log parser classes (right) comparison

International Journal of Web Services Practices, Vol. 5, No.1 (2010), pp. 1-9

ISSN 1738-6535 © Web Services Research Foundation

5

logging module was engaged in all services. More information
on the findings can be found in V.

2) Addressing:
An implementation of the WS-Addressing specification as

described in III-B1 comes as part of the addressing module in
the Axis2 core. It fully supports all components of the standard
and its ReplyTo and RelatesTo fields are used among other
things to allow for asynchronous communication in the TSSN.

3) Savan:
The Savan module enables web services and clients in Axis2

to make use of various forms of subscription mechanisms as
defined by the WS-Eventing specification (see III-B2).

B. Log Parser
The log parser enables parsing, processing and merging of

log files. It transforms the raw SOAP messages into Java
elements that can then be filtered and analyzed.

1) Abstraction Layer Model:
Since SOAP is essentially XML, information from the

so-called log messages can retrieved using XPath [14] path
expressions. For this purpose the log parser provides an object
abstraction layer model that corresponds to the specific parts in
the SOAP message.

An example mapping is shown in Figure 3. It displays the
structure of the original SOAP message (for more information
on the individual SOAP messages see III-B) on the left and the
equivalent log parser objects on the right. Note that the
corresponding objects highlighted in yellow are actual classes
while the Header and Body are not abstracted separately.

The log parser objects would then provide access to their
properties using XPath expressions. In this case they

correspond to their respective web service specifications but
they could also be defined according to the XML schema
definitions of any other element. For example, for the
WS-Addressing (see III-B1) equivalent object the path

expressions in Table I are used:

This mapping process is easily defined because it
corresponds to the web service specifications and allows for an
in-depth analysis of the messages that are sent and received.

2) Message Types:
Since the logging module is enabled on both ends of a

message exchange, the log parser is able to correlate messages.
In order to do this it makes use of the so-called message id that is
provided by the WS-Addressing specification. It has to be noted
that a requirement for the following analysis is that the times on
both ends of the message transfer are synchronized. Within the
TSSN system this is done using NTP [15] but it is also possible
with GPS.

Without this assumption the computed times are questionable
and represent an estimation at best. The following two types of
message associations are present in the log files:

a) Transmit-Receive Pair:
Whenever a message is sent out by a particular client or

service it is captured by the logging module. The receiving
service logs the message as well but as an incoming message.
The content of the message is essentially the same which can
also be seen by the fact that they have the same message id. The
outgoing and the incoming message are combined and form
what is called a transmit-receive pair.

This allows us to compute the message transfer or so-called
transmit time which describes how long it takes to transmit the
message from one entity to another using the following
equations:

 1 2.Incoming 1.OutgoingtransmitTime time time-= (1)
 2 4.Incoming 3.OutgoingtransmitTime time time-= (2)
As shown in Figure 4 the log parser automatically detects the

transmit-receive pairs and stores them in a particular list for
further analysis.

b) Message Couple:
The most common message exchange pattern is the In-Out

pattern. It defines request-response based message transfers
which the log parser calls message couples. A single message

TABLE I
XPATH EXPRESSIONS FOR WS-ADDRESSING

XPath expression Method equivalent

//To/text() getTo()
//ReplyTo//Address/text() getReplyTo()

//From/Address/text() getFrom()
//MessageID/text() getMessageId()
//RelatesTo/text() getRelatesTo()

//Action/text() getAction()

Fig. 4. Two transmit-receive pairs (red and green)

Fig. 5. A message couple (red)

International Journal of Web Services Practices, Vol. 5, No.1 (2010), pp. 1-9

ISSN 1738-6535 © Web Services Research Foundation

6

Fig. 6. Log file and service interaction visualization showing individual services grouped by their physical location

International Journal of Web Services Practices, Vol. 5, No.1 (2010), pp. 1-9

ISSN 1738-6535 © Web Services Research Foundation

7

couple consists of two messages, the outgoing request and the
outgoing response on the receiving entity, which is shown in
Figure 5. They can be correlated using the WS-Addressing
specification. The request will carry a message id and the
response a so-called relatesTo id in addition to its own unique
message id.

Note that a message couple can also be seen as a combination
of two transmit-receive pairs. This relationship is extremely
useful in computing measures such as round trip and processing
times:

 4.Incoming 1.Outgoing roundTripTime time time= - (3)

 3.Outgoing 2.Incoming processingTime time time= - (4)
The log parser provides functionality to associate messages

and analyze complete end-to-end message flows. More details
on the performance measurements and test results can be found
in V.

C. Visualization
In order to understand the message flows better without

needing too much of a technical background, a visualization
tool was developed. It makes use of the log parser to display
services, clients and messages that are present in log files.

The user is able to load and merge log files to create a
visualization of services and clients as shown in Figure 6. Lines
connecting individual services appear as communication occurs.
The layout of these services is defined according to their
membership in a particular service cloud. Furthermore, any
point in time that is part of the log files can be “jumped to” using
the time line. It displays significant events in the log files:

· Alarms, alerts and sensor node events with a warning
sign

· Requests such as location retrieval with a light bulb sign
· Control messages such as start monitoring with a

message sign
The scenario that was captured by the log files can also be

played back in portions or in its entirety. Using the visualization
tool, it is therefore possible to analyze service interactions and
message flows conveniently. An example message flow is
shown in Figure 7.

V. RESULTS
The framework described here enabled analysis of field trials

of the TSSN. The Transportation Security SensorNet [13] uses a
Service Oriented Architecture approach for monitoring cargo in
motion along trusted corridors. The complete system provides a
web services based sensor management and event notification
infrastructure that is built using open standards and
specifications. Particular functionality within the system has
been implemented in web services that provide interfaces
according to their respective web service specifications. This
web services based implementation allows for platform and
programming language independence and offers compatibility
and interoperability with other systems.

Furthermore, unlike existing proprietary implementations the
TSSN allows sensor networks to be utilized in a standardized

and open way through web services. Sensor networks and their
particular communication models led to the implementation of
asynchronous message transports in SOA and are supported by
the TSSN.

An in-depth analysis of the real world scenarios that were
performed to test the TSSN is given by [16]. For the tests the
Trade Data Exchange was deployed in Overland Park, the
Virtual Network Operation Center at the University of Kansas
in Lawrence and the Mobile Rail Network either on a truck or on
a train. Note that in both cases the communication between the
Mobile Rail Network and the Virtual Operation Center was
established using a GSM modem. The main findings are as
follows:

A. Short Haul Rail Trial
This more advanced scenario was performed by deploying

the Mobile Rail Network on a locomotive of a train along with
sensors attached to containers for it to monitor. The train
traveled approximately 35 kilometers during the trip, from a rail
intermodal facility to a rail yard.

The system faced some of the same issues as during the truck
trials such as loss of GPS, GSM and sensor communication. The
data that was collected however shows that again the
Transportation Security SensorNet was able to deal with them
and send out alarm notifications reliably. The log files were
analyzed using the log parser and led to the following:

1) Message Counts:
During the short haul rail trial the Sensor Node reported 546

alerts1 to the Alarm Processor. After filtering 131 alarms were
sent to the Alarm Processor at the Virtual Network Operation
Center. For 63 of them, shipment information was queried from
the Trade Data Exchange and 33 were stored as so-called
validated alarms. All of the 131 alarms that the Alarm
Processor received were sent out to Alarm Reporting service
which notified the according contacts via SMS and email. There
were also 30 inquiries from the TDE for the location of the
Mobile Rail Network.

1 Alerts were generated manually by opening and closing an electronic seal
in the locomotive and automatically by things such as losing a GPS fix

Fig. 8. Request performance from [16]

International Journal of Web Services Practices, Vol. 5, No.1 (2010), pp. 1-9

ISSN 1738-6535 © Web Services Research Foundation

8

2) Message Sizes:
Looking at the communication between the Virtual Network

Operation Center and the Mobile Rail Network one can notice
the following pattern. So-called control messages such as
startMonitoring or getLocation are always initiated at the
Virtual Network Operation Center. Since these messages
usually transmit only a small functional request, the average
message size is around 690 bytes. On the other hand, Alarms are
always sent from the Mobile Rail Network and contain of a lot of
valuable information. Hence the average message size is about
1420 bytes.

a) Request Performance:
As shown in Figure 8, the time it took for messages from the

Virtual Network Operation Center (Sensor Management) to
send requests to the Mobile Rail Network (either Sensor Node or
Alarm Processor) and receive a response was about 4.4 seconds
on average. The fastest request was answered in 0.9 seconds
while the slowest took about 11 seconds.

Overall these numbers meet the expectations of the
transportation industry. Performing a location inquiry given an
average train speed of 30 km/h and 60 seconds to retrieve the
location, the actual position and the reported one may differ by

as much as 500 meters. However, the Transportation Security
SensorNet provides location information in less than 5 seconds
resulting in a maximum difference of just 41.7 meters.

The bottleneck here is the message transmit time as defined in
Equation 1. As shown in Figure 9, processing on the Sensor
Node took only 0.6 seconds on average whereas about 85% of
the time is spent on message transmission. This percentage is
likely to increase when switching to satellite communication
instead of communicating with the GSM modem which was
used in the trials.

b) Alarm Notification Performance:
 Because of the problems with the clock drift, the measured

times for messages coming from the Mobile Rail Network going
to the Virtual Network Operation Center are unreliable.
However, taking our previous findings about the request
performance the time for this particular transmission can be
estimated using the average round trip and the processing times:

1

1 ()
n

i i
i

t roundTripTime processingTime
n =

= -å (5)

4.4 0.6

2
seconds seconds-

= (6)

 1.9seconds= (7)

Given this estimate transmit time t, we can compute the total
time it takes from for an alarm to go through the entire TSSN as
shown in 10.

This includes the times from the Sensor Node to the Alarm
Processor at the Mobile Rail Network, the approximated
transmit time of 1.9 seconds, and the time from the Alarm
Processor to the Alarm Reporting service at the Virtual
Network Operation Center. On average this yields about
2.1seconds with the fastest time being just over 1.9 seconds and
the slowest around 4.9 seconds.

(a) Network transmission performance from [16] (b) Processing performance from [16]

Fig. 9. Network transmission and processing comparison from [16]

Fig. 10. System alarm notification performance from [16]

International Journal of Web Services Practices, Vol. 5, No.1 (2010), pp. 1-9

ISSN 1738-6535 © Web Services Research Foundation

9

Both, the road test with trucks and the short haul rail trial can
be called successful because they displayed the capabilities of
the TSSN, its good performance and that the functionality
implemented in the web services worked. In particular, two of
its main capabilities, location inquiry and alarm notification
were extensively demonstrated. Furthermore, the time it took
from registering alerts, propagating them through the
Transportation Security SensorNet and sending out
notifications accordingly is under 5 seconds and significantly
smaller than expected for such a complex system.

The framework was used to capture and analyze the results
presented here. For example we were able to break down the
measurements into processing and transmission times as well as
determine the performance of individual web services and the
total alarm notification performance. Furthermore being able to
visualize message flows helped identify problems and locate the
particular part that was causing it.

VI. CONCLUSION
Capturing SOAP messages directly and using them as the

basis for log analysis has the advantage of being a more
structured approach because the SOAP messages adhere to
specific web service specifications. This allows convenient
mappings from the SOAP messages to elements defined in the
specification and vice versa.

In this paper we presented a flexible framework for analyzing
SOAP Messages in web service environments. The proposed
solution consists of three parts. First, a logging module that can
be attached to web services in order to capture SOAP messages
and log their send and receive times. Second, a log parsing and
processing library that allows for efficient correlation of
messages, message flows and analysis. Finally, a visualization
tool that provides convenient visual analysis of service
interactions capabilities.

ACKNOWLEDGMENT
This work was supported in part by Oak Ridge National

Laboratory (ORNL) Award Number 4000043403. This
material is also partially based upon work supported while V. S.
Frost was serving at the National Science Foundation.

REFERENCES
[1] Y. Lafon and N. Mitra, “SOAP version 1.2 part 0: Primer (second

edition),” W3C, W3C Recommendation, Apr. 2007,
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/.

[2] A. Chuvakin and G. Peterson, “Logging in the age of web services,” IEEE
Security and Privacy, vol. 7, pp. 82–85, 2009.

[3] C. Lim, N. Singh, and S. Yajnik, “A log mining approach to failure
analysis of enterprise telephony systems,” in Dependable Systems and
Networks With FTCS and DCC, 2008. DSN 2008. IEEE International
Conference on, June 2008, pp. 398–403.

[4] M. Cinque, D. Cotroneo, and A. Pecchia, “A logging approach for
effective dependability evaluation of complex systems,” in Dependability,
2009. DEPEND ’09. Second International Conference on, June 2009, pp.
105–110.

[5] R. Vaarandi, “Mining event logs with slct and loghound,” in Network
Operations and Management Symposium, 2008. NOMS 2008. IEEE,
April 2008, pp. 1071–1074.

[6] A. Makanju, S. Brooks, A. Zincir-Heywood, and E. Milios, “Logview:
Visualizing event log clusters,” in Privacy, Security and Trust, 2008.
PST ’08. Sixth Annual Conference on, Oct. 2008, pp. 99–108.

[7] H. Lam, D. Russell, D. Tang, and T. Munzner, “Session viewer: Visual
exploratory analysis of web session logs,” in Visual Analytics Science and
Technology, 2007. VAST 2007. IEEE Symposium on, 30 2007-Nov. 1
2007, pp. 147–154.

[8] J. Simmonds, Y. Gan, M. Chechik, S. Nejati, B. O’Farrell, E. Litani, and
J. Waterhouse, “Runtime monitoring of web service conversations,”
IEEE Transactions on Services Computing, vol. 99, no. PrePrints, pp.
223–244, 2009.

[9] M. Gudgin, M. Hadley, and T. Rogers, “Web services addressing 1.0 -
core,” W3C, W3C Recommendation, May 2006, http://www.w3.org/
TR/2006/REC-ws-addr-core-20060509.

[10] M. Gudgin, M. Gudgin, M. Hadley, T. Rogers, T. Rogers, and M. Hadley,
“Web services addressing 1.0 - SOAP binding,” W3C, W3C
Recommendation, May 2006,
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509.

[11] D. Box, L. F. Cabrera, C. Critchley, F. Curbera, D. Ferguson, S. Graham,
D. Hull, G. Kakivaya, A. Lewis, B. Lovering, P. Niblett, D. Orchard, S.
Samdarshi, J. Schlimmer, I. Sedukhin, J. Shewchuk, S. Weerawarana,
and D. Wortendyke, “Web services eventing (ws-eventing),” W3C, W3C
Member Submission, Mar. 2006,
http://www.w3.org/Submission/2006/SUBM-WS-Eventing-20060315/.

[12] K. Lawrence, C. Kaler, A. Nadalin, R. Monzillo, and P. Hallam-Baker,
“Web Services Security: SOAP Message Security 1.1 (WS-Security
2004),” OASIS, OASIS Standard, Feb. 2006,
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SOAPMessageSec
urity.pdf.

[13] M. Kuehnhausen, “Service Oriented Architecture for Monitoring Cargo
in Motion Along Trusted Corridors,” Master’s thesis, University of
Kansas, Jul. 2009.

[14] S. Boag, A. Berglund, D. Chamberlin, J. Sim´eon, M. Kay, J. Robie, and
M. F. Fern´andez, “XML path language (XPath) 2.0,” W3C, W3C
Recommendation, Jan. 2007,
http://www.w3.org/TR/2007/REC-xpath20-20070123/.

[15] D. Mills, “Network Time Protocol (NTP),” RFC 958, Internet
Engineering Task Force, September 1985, obsoleted by RFCs 1059, 1119,
1305. [Online]. Available: http://www.ietf.org/rfc/rfc958.txt

[16] D. T. Fokum, V. S. Frost, D. DePardo, M. Kuehnhausen, A. N. Oguna, L.
S. Searl, E. Komp, M. Zeets, J. B. Evans, and G. J. Minden, “Experiences
from a Transportation Security Sensor Network Field Trial,” Information
Telecommunication and Technology Center, University of Kansas,
Lawrence, KS, Tech. Rep. ITTC-FY2009-TR-41420-11, June 2009.

