The University of Kansas /

Copyright © 2002:
National Science F

All rights reserved.

Information and
’ “Telecommunication
Technology Center

Technical Report

The Rosetta Meta-Model Framework

Cindy Kong and Perry Alexander

ITTC-FY2003-30150-01

November 2002

This research was funded in part by the National
Science Foundation under award CCR-0209193

oundation

The University of Kansas Center for Research, Inc.,
2335 Irving Hill Road, Lawrence, KS 66045.

The Rosetta Meta-Model Framework

Cindy Kong and Perry Alexander
The University of Kansas
Dept of Electrical Engineering and Computer Science
Information and Telecommunication Technology Center
2335 Irving Hill Road
Lawrence, Kansas 66045
{ckong, alex}@Qittc.ku.edu

Abstract

Heterogeneous systems are naturally complexr and
their design is a tedious process. The modeling of com-
ponents that constitute such a system mandates the use
of different techniques. This gives rise to the problem of
methodology integration that is needed to provide a con-
sistent design. In this paper, we propose a meta-model
framework that provides such an integration. The se-
mantics of different computational models can be ex-
pressed and used together in the Rosetta framework.
We use denotational semantics to define unifying se-
mantic domains, which are themselves extended to pro-
vide ontologies for models of computation. Interaction
relations defined between models are then used to ex-
ploit and analyze model integration. We demonstrate
our approach by providing applications where different
computational models are used together.

1 Introduction

The design of computer systems increasingly in-
volves integrating models with heterogeneous seman-
tics. Today’s systems involve components implemented
using technologies such as software, digital hardware,
analog hardware, optics, and MEMS (Micro Electro
Mechanical Systems), each with their own domain spe-
cific semantics. When integrating such components
in analysis and synthesis activities, it is necessary to
bring together such disparate models to effectively pre-
dict performance properties. Thus, ontologies sup-
porting the specification and integration of computa-
tion models must be developed and supported in next-
generation systems level design languages.

The Rosetta specification language [1, 2] is being

developed with such a goal in mind. It is geared to-
wards system level design and provides a framework
where ontologies of computational models can be de-
fined. It also provides an interaction mechanism that
defines inter-domain impact.

In this paper, we describe the Rosetta domain
framework and use it to define models of computation.
We use the notion of a unifying semantic domain [8]
to provide a domain of discourse for models. A se-
mantic domain is called unifying when it is used to
represent various design paradigms. We exploit rela-
tions between unifying semantic domains and models
to derive interaction models. As inter-domain interac-
tions depend on the nature of models involved, their
derivation and definitions cannot be automated. It is
the domain designers’ responsibility to define such in-
teraction models. However, an interaction model need
be defined only once. We present two unifying seman-
tic domains, define a lattice of models of computation
based on them, and express interactions between some
of these models. We demonstrate modeling capabili-
ties in the design of a vending machine in CSP [16].
We also show composition and interaction in modeling
power consumed in a state-based timer model.

2 The Rosetta Specification Language

System level modeling involves integrating domain-
specific models into a consistent system model. This
integration is not easy due to the possibility of
inter-domain interactions, where information from one
domain-specific model impacts models from other do-
mains. Rosetta attempts to address this problem di-
rectly in its domain representation semantics. Domains
define ontologies of computational models and design
paradigms. Systems are modeled by aspects, each as-

pect representing a domain specific viewpoint. A sys-
tem model is then obtained by assembling these as-
pects with the use of interaction models. An interac-
tion model specifies what information exchange occurs
between two domains.

In Rosetta, an aspect is called a facet. It represents
the basic unit of modeling. Its specification consists of
a signature, a domain, and terms. The signature con-
sists of the name of the facet and a list of parameters.
The domain that the facet extends provides a domain
of discourse for the facet. In other words, the facet uses
items defined in the domain and adds additional prop-
erties to them. Terms are used to express such prop-
erties. A facet can also create new items and again,
terms can be used to define their properties. Semantic
correctness is then defined as consistency of terms with
respect to the specified domain. If no inconsistency is
introduced by terms and declarations within the facet,
then the facet definition is consistent.

Syntactically, as shown below, a facet has a label,
a list of parameters, a list of declarations and a list of
terms. Declarations create constants, variables, func-
tions, types and even other facets. Terms are boolean
expressions that describe constraints on declared items,
or define and include other facets to support structural
definition. The :: operator indicates membership and
is used in declarations to provide type information. In
the case of a facet declaration, the domain the facet
extends provides the type information of the facet.

facet <facet-label> (<parameter-list>)
::<domain-label> is
<declarations>
begin
<terms>
end facet <facet-label>;

Domains represent computation models and vocab-
ularies for domain specifications. When writing a spec-
ification, a designer chooses a domain appropriate for
the model being constructed. The domain is extended
by adding declarations and terms that use the base do-
main’s predefined computational model. Alternatively,
designers can define their own domain by extending an
existing domain or start completely from scratch. The
advantage of using an existing domain is reuse of the
domain and its interactions with other domains. The
syntax for domains is similar to that of facets as do-
mains are simply special facets.

3 Domain Semantics

Although the Rosetta framework provides some se-
mantics in the form of facet algebra, it is mainly a

syntactic platform. Semantics used in facet specifica-
tions is provided in domains. Therefore, specifications
have different meanings depending on their domains.
We use a denotational approach [3, 24] to describe
these domain semantics. The denotational approach
provides semantic valuation functions to map syntac-
tic constructs to abstract values. Using different val-
uation functions thus gives different meanings to the
same construct.

There are several ways for defining denotational
semantics of a program. A common approach is
to provide partial functions or relations on program
states [3, 24]. Each state defines values for the vari-
ables in the program. A command in the program
then denotes a change in state. Lee and Sangiovanni-
Vincentelli [20] propose another approach to denota-
tional semantics based on signals. A program, or
rather, a process is represented by a partial function or
relation over signals. This approach to denotational se-
mantics is specifically suited to modeling concurrency.

Program denotations into different representations
give rise to the idea of making these representations
available at a higher level of abstraction. By mak-
ing these representations available, we allow design-
ers to decide earlier on the best representations for
their system specifications. We consider state based
and signal based semantics to represent unifying se-
mantic domains [8] that we call units of semantics.
A unifying semantic domain represents a set of seman-
tic objects that is used to represent several models of
computation. For example, the state based semantics
is used to express computational models such as finite
state machines, sequential machines, continuous com-
putation models and so on. The signal based semantics
is used to express models such as CSP, Petri nets, and
other concurrent models.

We use domains to contain the information relevant
to units of semantics, models of computation, design
paradigms, or engineering concepts. A domain pro-
vides an environment where new semantic definitions
can be defined for new or existing constructs. Addi-
tional constraints can also be defined on existing se-
mantics. Existing constructs or semantics need not be
originally declared in the same domain. A domain is
said to extend another one when it uses constructs and
semantics defined in that other domain. This notion of
extension is similar to that in the Java Programming
Language [12]. The extending domain can use defini-
tions from the domain being extended. However, the
extension is not always conservative. By adding new
semantics or constraining previously defined ones, it is
possible to add properties that are inconsistent with
existing ones. Consistency is guaranteed only if the

—> Extensions
i —>> Homomorphisms
0giC = = > Partial Morphisms

,,,,,,,,, /\ Unitof

state-based- ;e% signal-based-semantics Semanics
continuous discrete
— \ Mode! of
/ ‘ G Computation

COntinuouS=1me <= icrete-time | /

frequency p finite-state

R SRR N U N Enginesring

RF digital sequential-machine synchronous Modeling

Figure 1. Lattice of Domains

properties added concern new syntactic constructs and
are consistent in themselves.

Figure 1 shows the lattice of domains that is
obtained through extension. The root of the lat-
tice is the domain logic that acts as prelude to
the Rosetta language. It contains definitions for
all basic types and constructs of Rosetta. The
rest of the domains are divided into three groups:
unit of semantics, model of computation and en-
gineering modeling. State-based-semantics and
signal-based-semantics represent units of semantics
that define state-oriented and signal-oriented unifying
semantic domains respectively. The discrete,
finite-state, discrete-time, continuous,
continuous-time and frequency computational
models extend state-based-semantics. CSP [16] and
trace-based are two models of computation based on
signal-based-semantics. Some examples of engineering

modeling domains are RF, digital, sequential
machines and synchronous.
Discrete domain 1

domain discrete(f::facet) ::
begin
dl: exists (fnc::<*(st::States)::natural*> |
forall(s1,s2::States]|
(s1 /= s2) implies (fnc(sl) /= fnc(s2))))
end domain discrete;

state_based_semantics is

The discrete domain (Specification 1) repre-
sents models where each state is discrete. It ex-
tends state-based-semantics and adds an addi-
tional constraint on the States set (declared in

state-based-semantics). Since each state is discrete,
there exists an injective relation (or one-to-one rela-
tion) between the set of states and the set of natural
numbers. A one-to-one relation involves a function fnc
that maps a state to a natural number such that if
two states are different, then they map to two different
numbers. Term d1 expresses this relation. There exists
a function fnc, such that for any two states s1 and s2,
if s1 and s2 are different, then their mappings under
fnc are different.

An example of a domain that extends the
signal-based unit of semantics is the csp domain. It
uses items introduced in that parent domain such as:

Values type representing set of values associated with
tags.

Tags type representing the set of tags.

Event constructed type that consists of a value and
a tag. A specific instance of the type is given as
event(tl, el). Accessor functions are automat-
ically generated to access each field of the con-
structed type. Therefore, tag(event (t1,v1)) re-
turns t1 and value(event(t1,v1)) returns vi.

Signals type representing the set of signals. Each sig-
nal is a set of events.

@ dereferencing operator of a label with respect to a
tag. This operator appears in all domains, but its
semantics differs.

In the csp domain, we add constraints over these items
to express the properties that are necessary to define
processes. Specification 2 provides part of the Rosetta
csp domain. Term c1 states that there is a total order-
ing of all tags in csp (the partial ordering axioms are
also defined but not shown here). Therefore, although
Signals are sets, due to the ordering of all tags, and
therefore of all events, Signals can be considered as
ordered sets. The function put adds an event to a sig-
nal. Get is its counterpart as it takes an event from
the signal (we intend get to return the event in the
signal with the lowest tag as shown in term c2. If evt
is the event returned by get, then its tag is less than
or equal to the tags of all other events in the same
signal.) Function getSignal returns the signal with-
out the event returned by get. Term c3 states that
two different events within the same signal cannot have
the same tag value. This prevents nondeterminism as
events are processed according to the lower tag value.
We need not say that nondeterminism can be useful
in modeling and therefore we may want to allow it in
Rosetta specifications. However, for the purpose of this
paper, we do not need this additional complication. Al-
though not shown here, we also have definitions of the

different protocols for communication over signals, e.g.
rendez-vous, letterbox and so on.

CSP domain | 2

domain csp(f::facet) :: signal_based_semantics is
put(sig::Signals;evt::Event)::Signals;
get(sig::Signals): :Event;
getSignal(sig: :Signals)::Signals;
tg::Tags; // current tag
nextTg: :Tags; // next tag

begin
cl: forall(tl,t2::Tags | t1 <= t2 or t2 <= t1);
c2: forall(sig::Signals;evt::Event |
(get(sig) = evt) implies
forall(otherEvt: :Event |
(otherEvt in sig) implies
(tag(evt) <= tag(otherEvt))));
c3: forall(sig::Signals;evtl,evt2::Event |
(evtl in sig) and (evt2 in sig)
and (evtl /= evt2) implies
(tag(evtl) /= tag(evt2)))

end domain csp;

4 Examples
4.1 Example of A Coffee/Tea Vending Machine

We choose a vending machine as a modeling exam-
ple, following the tradition started by Hoare [16] and
continued in several work [18, 28]. We model a vending
machine that provides the choice of a cup of coffee or a
chocolate when a dollar is paid and the choice of a cup
of tea or a cookie when 75c is paid. The dollar and 75c¢
events are the guards between two alternatives. Once
one of these events occur, an external choice (the user)
selects the next event. The CSP model is given as:
VM = (dollar — (coffee [] chocolate) — VM) || (75¢c —
(tea [] cookie) — VM)

In Specification 3, csp_vending is the Rosetta CSP
specification representing the above vending machine
process. VendTags represents the set of tags in our
system. There are two possible states to the vend-
ing machine: (1) the machine is expecting money, and
(2) coin event has already happened, the machine is
expecting a choice. Therefore, VendTags consists of
two elements. Since it is totally ordered, we choose
integral values 1 and 2 that are intrinsically ordered.
The values associated with events are dollar, coffee,
chocolate, 75c, tea and cookie, each representing an
event from the CSP model (VendValues). VendEvent
and VendSignals respectively define the event type
and signal type used in our specification. The vending
machine process uses three signals: input for events
produced elsewhere, output for events produced by the

process, and ctrlSig for control events. The control
signal ctrlSig contains only one event at any time.
The tag of the event tells the process the state in which
it is and the value of the event keeps track of the last
event processed. As the control signal is not accessi-
ble from outside the process, we know for sure that
the current tag can take only two values, namely 1
and 2. Therefore, we can do dereferencing as follows
ctrlSigOnextTg where nextTg is the next tag. The
machine works as follows. Terms c1 and c2 define the
values of tg and nextTg. Term c3 defines the machine’s
behavior. If event in ctrlSig is init and if event in
input is dollar, then ctrlSig@nextTg becomes a copy
of the current ctrlSig from which event init was re-
moved and event dollarCoin added (input becomes
a new signal without the coin event). If instead, con-
trol event is dollarCoin, then depending on the event
in input, either a coffee or a chocolate event is put in
output. Note that ctrlSig and input are modified
such that the machine goes back to the initial waiting
state at the next tag.

4.2 Example of an Interaction

An interaction represents a relation that defines
when and where information from one domain impacts
another. Whenever facets using domains that interact
are composed, the interaction specification is automat-
ically included. We demonstrate the methodology be-
hind interaction models with an example of high level
power analysis.

Power is the leading constraint in embedded system
modeling. However, as power is implementation depen-
dent, power analysis has been mostly done at low lev-
els of abstraction. We use Rosetta and its interaction
mechanism to propose a new methodology for estimat-
ing power dissipation at high-level. The methodology
consists of first modeling the behaviors of a system.
Then, the interaction between the system models and
technology specific power models is analyzed to derive
power consumed if the system is implemented in that
technology. In another paper, we provide examples of
power analysis for implementation in the CMOS tech-
nology. In this paper, we are interested in analyzing
power dissipated in a software implementation. Tiwari
et al. [27] propose a method for estimating power con-
sumed by processors while executing some instructions.
We use their results to provide estimation models for
power consumed in a Rosetta design. We analyze the
operations that occur in a model. The instructions
that are needed for a specific operation can usually
be estimated by engineers. Using empirical models de-
rived from Tiwari’s work, we can therefore calculate the

Models for a coffee/tea vending machine 3

VendTags: :subtype(Tags) is {1,2};
VendValues: :subtype(Values) is
enumeration[dollar, coffee, chocolate,
75c, tea, cookiel;
VendEvent: : subtype (Event (VendTags,VendEvent)) ;
VendSignals: :subtype(Signals) is set(VendEvent);
CtrlValues: :subtype(Values) is
enumeration[init,dollarCoin,75cCoin];
CtrlEvent: :subtype (Event (VendTags,CtrlValues));
CtrlSignals: :subtype(Signals) is set(CtrlEvent);

facet csp_vending() :: csp is
input,output,ctrlSig: :VendSignals;
export input,output;
begin
cl: tg = tag(get(ctrlSig));
c2: nextTg = if (tg = 1) then 2 else 1 end if;
c3: case value(get(ctrlSig)) is
init ->
case get(input) is
event (1,dollar) ->
(ctrlSig@nextTg =
put (getSignal(ctrlSig),
event (nextTg,dollarCoin))) |
... // case 75c event similar to dollar event
end case |
dollarCoin ->
case get(input) is
event (2,chocolate) ->
(output@nextTg = put(output,event(2,chocolate)))
and (ctrlSig@nextTg =
put (getSig(ctrlSig) ,event (nextTg,init)))
and (input@nextTg = {}) |
event (2,coffee) ->
(output@nextTg = put(output,event(2,coffee)))
and (ctrlSig@nextTg =
put (getSig(ctrlSig) ,event (nextTg,init)))
and (input@nextTg = {})
end case |
... // case 75cCoin - similar to dollarCoin case
end case;
end facet csp_vending;

Interactions 4

interaction DandP(f::discrete, g::power)
:: logic is
begin
power_to_discrete: {};
discrete_to_power:
reflect.meta_if
(orModified(sel(v::meta.params(g) | output(v))),
outputActivity=0, outputActivity=1)
and reflect.meta_equal (operatorActivity,
g.calculateOpActivity(meta.getOperators(g)))
and reflect.meta_equal(structureActivity,
reflect.meta_sum(g.calculateStructActivity
(meta.getInstantiatedFacets(£))))
and reflect.meta_equal(activity,
outputActivity*g.outputActCoeff +
operatorActivity + structureActivity);
end interaction DandP;

Timer model 5

facet timer(set::in boolean;startTime::in natural;
alarm::out boolean) :: discrete is
currentTime: :real;

decrement (time: :natural) :: natural is time - 1;

begin
init:set => currentTime’ = startTime;
t1: (not set) => currentTime’ = decrement(time);

t2: alarm = if (currentTime’=0)
then true else false end if;

power consumed by a model. The result is not very ac-
curate and will also probably be underestimated. How-
ever, it should be sufficient for comparison purposes
between implementation technology and between pos-
sible designs.

The power domain defined in Rosetta specifies
how power consumption is to be calculated across
a state change (pl: power’ = activity * nominal
+ leakage;). Depending on the implementation tech-
nology, activity either represents switching activity
at the gate level or current drawn by instructions.
Leakage is a parameter provided by engineers to rep-
resent the static power dissipated through leakage cur-
rent. Nominal is the nominal voltage. The power’ is
a shortcut notation expressing power@next(state), i.e.
the value of power across a state transformation. The
following functions and variables are also declared in
the power domain:

calculateOpActivity(opSet: :sequence(labels))
::real;

calculateStructActivity(facetSet: :set(facets))
rireal;

outputActCoeff: :real;

Specification 4 provides an interaction model of
what occurs between the power and discrete domains.

A software power facet (swp), extending the power
domain, is written. It provides terms that de-
fine the functions and variables mentioned above.
It is important to note that declaration is differ-
ent from definition. A declaration gives the sig-
nature of an item, while definition provides the
value of a just declared or already declared item.
CalculateOpActivity calculates the total average
current (in mA) drawn by all the operations involved
in a design. CalculateStructActivity calculates the
average current drawn by instantiated facets. Facet
instantiation is used in structural composition.

facet new_swp(Vcc,leakage: :design posreal)
:: power is
calOpActivity(opSet: :sequence(labels)):: posReal is
if (opSet == nil)
then 0
else let (operator::label be opSet(0)) in
case operator is

+2 => 400
’=2 -> 300
‘not’ -> 276
’=2 -> 500
’=>2 -> 700
end case
end let
+ calOpActivity(tl(opSet))
endif;
calStActivity...;
begin
tl: calculateOpActivity = calOpActivity;
t2: calculateStructActivity = calStActivity;
t3: outputActCoef = 0;
t4: nominal = Vcc;
discrete_to_power:
if modified(alarm)
then outputActivity
else outputActivity
end if
and operatorActivity = calculateOpActivity(...)
and structureActivity=calculateStructActivity(...)
and activity = outputActivity*outputActCoef +
operatorActivity + structureActivity;
end facet new_swp;

0
1

Specification 5 shows a simple example of a timer
that goes off whenever it decreases to zero. Such a
timer is used in operating systems for threads that are
given a certain CPU time budget, but do not allow
preemption. We compose this model with the software
power model to analyze the power consumed by the
timer as follows:

timer(setVal,start,alarm) DandP swp(Vcc,leakage)

The resulting facet is one where both models co-
exist. We obtain a software power augmented model
(new-swp as shown above) by projecting this com-
posed facet into the power domain. This results
in adding terms (discrete-to-power) derived from
interaction DandP into the new facet. This new
facet also contains terms (t1, t2, t3 and t4) and
declarations (calOpActivity and calStActivity)
from the original software power facet. Function
calOpActivity denotes what calculateOpActivity
does. If-then-else, let and case are functions in
Rosetta. They return the value of the expression they
evaluate to. For example, if the sequence opSet is
empty (nil), the whole if expression evaluates to 0.
CalOpActivity is a recursive function. It returns 0
if the sequence is empty, else it evaluates the current
drawn by the first operator in the sequence, and adds
this value to a recursive call on the rest (t1(opSet)) of
the operators in the sequence. The values in the case
expression are derived from Tiwari’s [27] estimation of
current drawn in a 486DX2 processor. For more de-
tails on the Rosetta syntax, please refer to the Usage
Guide [1].

We simulate this augmented power model to es-
timate power consumption for the timer. Vcc for

the 486DX2 is 5V. We assume a power leakage of
0.25 W. Since outputActCoef is 0, we do not care
about the outputActivity. As no facet is instanti-
ated in the timer example, structureActivity is also
0. OperatorActivity is equal to 3700 mA (one ’-’,
two '=" and four '="). Therefore, total power is given
by 18.75 Watt (3700 * 5 + 0.25). This is only an av-
erage estimate and the energy consumed can then be
calculated according to the speed of the CPU. It can
be made more accurate by other measurement of cur-
rent drawn per instruction, and by involving only the
operators that are used per state, instead of simply
calculating the current drawn by all operations in the
facet.

5 Related Work

Several efforts have been directed toward combin-
ing different methodologies and tools together. We
group the related work into five categories: (1) com-
putational model use and composition in one frame-
work; (2) discrete and continuous domain modeling;
(3) meta-modeling; (4) requirements engineering; and,
(5) multiple logic.

Computational model composition is an important
problem. Ptolemy II [7], SAL [6], and Metropolis [§]
provide different approaches to this problem. Ptolemy
IT type system [21] is augmented by interaction types
derived from analysis of automata representing concur-
rent computational models. Models are composed by
using specific connecting entities of these types. The
SAL, Symbolic Analysis Laboratory, framework allows
the use of many tools and models by using an inter-
mediate language. This language can be translated
to and from the languages of different analysis tools,
and can also be used to represent different concurrent
computational models. The Metropolis project pro-
poses a framework where formal models can be defined
and compared. It uses trace algebra to compose mod-
els through connecting channels. Rosetta differs from
these approaches in that it allows vertical integration
of models. Vertical integration does not need commu-
nicating channels between models.

There are several approaches focused on combin-
ing discrete and continuous modeling. A hybrid au-
tomaton [15] is a generalization of timed automa-
ton [4]. Continuous behavior is modeled according
to differential equations within a state, while discrete
behavior is modeled as jumps across states. Model-
checking techniques can be applied to hybrid automata.
HYTECH [26] provides a model checker for hybrid au-
tomata, while UPPAAL [5] provides a model checker
for networks of timed automata. VHDL 1076.1 [9], also

known as VHDL-AMS, is a language for mixed-signal
design. It is a hardware description language that sup-
ports the description and simulation of digital, analog
and mixed analog/digital systems within one environ-
ment. It defines a concept of quantity, to represent
continuous variation. Rosetta also provides a frame-
work for hybrid or mixed system modeling. However,
Rosetta’s framework is open and allows definition and
use of other computational models.

The notion of meta-modeling is an object-oriented
paradigm and UML [13] is often used for its imple-
mentation. A meta-model defines objects that can
be instantiated to obtain objects of models. The
MultiGraph Architecture [22] is a toolkit for creat-
ing model integrated program synthesis (MIPS) that
allows experts to integrate models that represent
domain-specific systems through a methodology called
model-integrated computing (MIC). The Generic Mod-
eling Environment (GME) [19] provides a tool that im-
plements the MultiGraph Architecture. Terrasse et al.
propose another UML metamodeling architecture to
define abstract bases of agreement for interoperabil-
ity of information systems [25]. Rosetta’s framework
can also be considered as a meta-modeling architec-
ture. It provides semantic meta-models for computa-
tional models.

In requirements engineering, we relate Rosetta to
viewpoints, feature engineering and aspect-oriented
programming. The Viewpoints [10] framework allows
different perspectives of a system to be expressed with
different representation. Consistency check instruc-
tions provide conditions that need to hold for composi-
tion of the viewpoints into a complete system. Feature
engineering consists of describing a system (mainly in
telephony) by features, with a feature being a unit of
functionality [29]. The idea is to specify features as if
they were independent and then use composition op-
erators to combine them together. In Aspect-Oriented
Component Requirements Engineering (AOCRE) [14],
components are categorized according to the “aspects”
that they either provide or need. Engineers use these
aspects to reason about inter-component relationships.
In aspect-oriented programming, the same notion of
an aspect is applied on methods [17] instead of com-
ponents. Rosetta differs from Viewpoints and feature
engineering as it provides consistency checks automati-
cally in its type checking. Rosetta does aspect-oriented
modeling at a higher level of abstraction (specification
instead of programming).

Institution theory and Isabelle provide approaches
to combining multiple logics. The concept of an institu-
tion [11] is introduced to formalize the notion of a “log-
ical system” and provides a foundation for exploiting

the relation between logical systems. Some sentences
can be consistently translated from one logical system
to another. Isabelle is a generic theorem prover [23].
It provides a logical framework, i.e. a meta-logic, that
can be used to formalize several objects-logic. Rosetta
focuses on combining computational models instead of
logics.

6 Conclusion

We introduce the Rosetta meta-model framework
as a framework where different computation models
can be used and composed. We provide definitions
for some computational models and demonstrate their
use in designing a simple vending machine. We also
define an interaction relation between power and dis-
crete domain to demonstrate a new methodology for
estimating power dissipated by software. We observe
that an interaction needs to be written only once. The
discrete-power interaction is reused whether we are in-
vestigating power in a CMOS implementation or soft-
ware implementation.

Numerous Rosetta analysis tools are under develop-
ment. A Java simulator and a verifier will soon be avail-
able to provide formal verification support to Rosetta.
Commercial test vector and test case generation tools
are available for generating VHDL test vectors and will
soon be available for C++. Prototype IP reuse and
matching tools have been developed to aid designers
in automatically determining if a component meets a
collection of problem requirements. In support of these
activities, Rosetta is currently undergoing standardiza-
tion by the Accellera EDA standards organization.

References

[1] P. Alexander, D. Barton, and C. Kong. Rosetta
Usage Guide. The University of Kansas / ITTC, 2335
Irving Hill Rd, Lawrence, KS, 2000.

[2] Perry Alexander and Cindy Kong. Rosetta: Semantic
support for model-centered systems-level design.
IEEE Computer, 34(11):64-70, November 2001.

[3] L. Allison. A practical introduction to denotational
semantics. Number 23 in Cambridge Computer
Science Texts. Cambridge University Press, 1986.

[4] R. Alur and D. Dill. A theory of timed automata.
Theoretical Computer Science, 126:184-235, 1994.

[5] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul
Pettersson, and Wang Yi. UPPAAL - a tool suite for
automatic verification of real-time systems, December
1996. http://www.brics.dk/RS/96/58/.

[6] Saddek Bensalem, Vijay Ganesh, Yassine Lakhnech,
Cesar Munoz, Sam Owre, Harald Rueb, John

(8]

(9]

(10]

(11]

[12]

(13]

14]

(15]

[16]

(17]

18]

Rushby, Vlad Rusu, Hassen Saidi, N. Shankar, Eli
Singerman, and Ashish Tiwari. An overview of SAL.
In C. Michael Holloway, editor, Fifth NASA Langley
Formal Methods Workshop, Williamsburg, VA, June
2000.
http://shemesh.larc.nasa.gov/fm/Lfm2000/Proc/.

J. T. Buck, S. Ha, E. A. Lee, and D. G.
Messerschmitt. Ptolemy: A framework for simulating
and prototyping heterogeneous systems. Int. Journal
of Computer Simulation, 4:155-182, April 1994.

J. R. Burch, R. Passerone, and A. L.
Sangiovanni-Vincentelli. Overcoming heterophobia:
Modeling concurrency in heterogeneous systems. In
Proceedings of the second International Conference on
Application of Concurrency to System Design, June
2001.

Ernst Christen. The VHDL 1076.1 language for
mixed-signal design. EE Times, June 1997. Analogy,
Inc.

A. Finkelstein, J. Kramer, B. Nuseibeh,

L. Finkelstein, and M. Goedicke. Viewpoints: A
framework for integrating multiple perspectives in
system development. International Journal of
Software Engineering and Knowledge Engineering,
2(1):31-58, March 1992. World Scientific Publishing
Co.

J. A. Goguen and R. M. Burstall. Introducing
institutions. Lecture Notes in Computer Science,
164:221-255, 1984.

James Gosling and Henry McGilton. The Java
Language Environment: A White Paper. Sun

Microsystems, Mountain View, CA, May 1996.
http://java.sun.com/docs/white/langenv/.

The UML Group. UML Metamodel. Rational
Software Corporation, Santa Clara, CA, 1.1 edition,
September 1997. http://www.rational.com.

John Grundy. Aspect-oriented requirements
engineering for component-based software systems. In
Proceedings of RE’99, Limerick, Ireland, June 1999.
IEEE.

Thomas A. Henzinger. The theory of hybrid
automata. In Proceedings of the 11th Annual IEEE
Symposium on Logic in Computer Science, pages
278-292, 1996.

C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall, Englewood Cliffs, 1985.

Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Lopes, Jean-Marc Loingtier,
and John Irwin. Aspect-oriented programming.
Technical report, Xerox Palo Alto Research Center,
1997.

C. Kirkwood and K. Norris. Formal Description
Techniques, volume III, chapter Some Experiments
using Term Rewriting Techniques for Concurrency,

(19]

[20]

21]

(22]

23]

(24]

25]

(26]

27]

(28]

29]

pages 527-530. Elsevier Science Publishers B.V.,
1991.

A. Ledeczi, M. Maroti, A. Bakay, G. Karsali,

J. Garrett, C. Thomason, G. Nordstrom, J. Sprinkle,
and P. Volgyesi. The generic modeling environment.

In In Proceedings of WISP 2001, Budapest, Hungary,
May 2001.

Edward A. Lee and Alberto Sangiovanni-Vincentelli.
A framework for comparing models of computation.
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 17(12):1217-1229,
December 1998.

Edward A. Lee and Yuhong Xiong. System-level
types for component-based design. Technical report,
University of California at Berkeley, February 2000.

Greg Nordstrom, Janos Sztipanovits, Gabor Karsai,
and Akos Ledeczi. Metamodeling - rapid design and
evolution of domain-specific modeling environments.
In Proceedings of the IEEE Conference and Workshop
on Engineering of Computer-Based Systems,
Nashville, Tennessee, March 1998.

Lawrence C. Paulson. The foundation of a generic
theorem prover. Journal of Automated Reasoning,
5(3):363-397, 1989.

Joseph E. Stoy. Denotational Semantics: The
Scott-Strachey Approach to Programming Language
Theory. The MIT Press, 1977.

Marie-Noelle Terrasse, Marinette Savonnet, and
George Becker. An uml-metamodeling architecture
for interoperability of information systems. In 4th
International Conference on Information Systems
Modelling, Hradec nad Moravici, Czech Republic,
May 2001.

Pei-Hsin Ho Thomas A. Henzinger and Howard
Wong-Toi. Hytech: A model checker for hybrid
systems. Software Tools for Technology Transfer,
1:110-122, 1997.

Vivek Tiwari, Sharad Malik, Andrew Wolfe, and
Mike Tien-Chen Lee. Instruction level power analysis
and optimization of software. Journal of VLSI Signal
Processing, pages 1-18, 1996. Kluwer Academic
Publishers, Boston.

Mark Utting. An Object-Oriented Refinement
Calculus with Modular Reasoning. PhD thesis,
University of New South Wales, Kensington,
Australia, October 1992.

Pamela Zave. Feature-oriented description, formal
methods, and dfc. In Stephen Gilmore and Mark
Ryan, editors, Language Constructs for Describing
Features, pages 11-26. Springer-Verlag London Ltd,
2000/2001. Feature Integration in Requirements
Engineering.

