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Abstract- The concept of radar satellite constellations, or 

clusters, for SAR and other radar modes has been proposed and 
is currently under research.  These systems are composed of 
multiple, formation-flying satellites with each satellite having its 
own, coherent receiver.  Increased swathwidth compared to that 
of traditional SAR is attainable by processing the spatial data 
obtained from multiple satellites.  The multi-channel system can 
also be scanned both forward and backward. 

The size and orientation of a such a system’s resolution cell 
can change dramatically, however, depending on the number of 
satellites in the constellation, the size of the constellation, the 
look geometry, and the subset of data that is coherently 
processed.  In addition, any of these parameters can be varied 
on demand according to mission requirements.  The 
constellation itself forms an array that is sparsely populated and 
irregularly spaced.  Furthermore, if the constellation is of 
extremely wide extent, then the width of its array pattern 
determines resolution rather than system bandwidth and 
coherent integration length.  The problem of predicting system 
resolution is further exacerbated by forward- and backward-
looking scenarios. 

In order to aid in the design, analysis, and signal processing of 
radar satellite constellations, we present a method of 
characterizing the resolution of such systems.  We derive two 
eigensensors that can be interpreted as the dimensions of a two-
dimensional synthetic aperture.  Then, the synthetic aperture 
expression is used to derive resolution; simulations are 
presented to verify the theory. 

 
I.  INTRODUCTION 

 
There is currently a strong push toward improving 

spaceborne radar technology.  This is due to several 
advantages provided by spaceborne radar, the most important 
of which is the ability to achieve global coverage.  However, 
spaceborne implementations are also problematic, especially 
concerning the size of the required antennas.  The minimum 
size of a SAR antenna is restricted by the minimum SAR 
antenna area constraint, and low radial velocities observed by 
spaceborne platforms require high angular resolution in order 
to distinguish between moving and stationary targets.  
Therefore, spaceborne applications require large antennas 
that can be difficult to deploy and expensive to launch. 

One proposed concept for space-based radar that decouples 
the antenna size requirements from the need to launch and 
deploy a single, monolithic antenna array is to place multiple 
transmitters and receivers into space, each on their own, 
small satellite [1].  These satellites, called microsats, would 
fly in a formation called a satellite constellation.  Each 
satellite in the constellation would be able to coherently 
sample the signal transmitted from each of the transmitters in 
the constellation.  In this way, the constellation would work 

as a single, virtual radar able to operate in multiple modes 
including interferometric, SAR, and MTI. 

The constellation concept provides the ability to 
reconfigure the radar system according to mission 
requirements.  In addition to possibly varying sensor 
parameters such as bandwidth and integration time, the 
constellation concept allows for reconfiguration of the 
antenna array by dynamically including different numbers of 
satellites in the constellation.  The size of the array may also 
be able to be changed by adjusting the orbits of the microsats. 

The disadvantages of the constellation concept stem from 
the fact that the resulting antenna array will be sparsely 
populated, non-uniform, and three-dimensional.  It has been 
demonstrated that increased SAR swathwidth can be 
achieved by processing the sparse array properly [2], and 
research into MTI processing for the constellation concept is 
ongoing.  In developing SAR and MTI algorithms for this 
type of system, however, it is important that we be able to 
assess typical radar performance parameters such as 
resolution and the radar ambiguity function. 

This paper presents a method for analyzing radar resolution 
for sparse arrays.  In addition, the technique can be used for 
both sidelooking and non-sidelooking scenarios.  In Section 
II, we describe the radar model used in this paper.  In Section 
III, we derive a 2D synthetic aperture that is a generalization 
of the 1D synthetic aperture interpretation of SAR.  In 
Section IV, we use the synthetic aperture to express system 
resolution. Then, we compare the theoretical result with 
numerically generated radar ambiguity functions in Section 
V.  We make our conclusions in Section VI. 

 
II.  RADAR MODEL 

 
Let the vector, x , represent the location of a scatterer on 

the Earth’s surface.  The complex signal received by the radar 
system depends on the radiation pattern of the transmitter, 

( )g x , the scatterer’s range, ( )R x , the two-way propagation 

delay, τ , the scatterer’s reflection coefficient, ( )γ x , and the 

sensor’s five measurement parameters: time, frequency, and 
3D spatial location.  Letting the sensor’s five measurement 
parameters be represented by the vector, s, the received 
signal, d, due to a single scatterer is then 

( ) ( ) ( )
( )

( ) ( )2, exp
g

d w j
R

γ
= − ωτ

x x
x s s

x
 (1) 

where ( )w s  is a sensor weighting function that describes 

parameters such as the sensor’s transmit signal spectrum and 
receiver frequency response.  Then, noting that the 
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propagation delay actually varies with time, sensor location, 
and scatterer location, we let the received phase be expressed 
as ( ),Ψ = ωτx s , and (1) becomes 

( ) ( ) ( )
( )

( ) ( )2, exp ,
g

d w j
R

γ
 = − Ψ 

x x
x s s x s

x
. (2) 

 
III.  SPACE-TIME-FREQUENCY SYNTHETIC APERTURE 

 
Since the scatterers themselves vary only in position on the 

Earth’s 2D surface, it is reasonable to assume that only two 
sensor dimensions are needed for representing the radar data.  
Therefore, we hypothesize that although the phase expression 
of (2) varies versus five sensor parameters, those sensor 
parameters can be projected into the coordinates of two 
independent eigensensors.  The projection of a sensor’s time, 
frequency, and spatial parameters onto these two 
eigensensors forms a 2D synthetic sensor that can be used to 
characterize SAR and MTI performance. 

We derive the 2D synthetic sensor by performing two first-
order Taylor expansions of the received phase.  First, the 
phase is expanded around the radar sensor parameters, s.  The 
result is 

( ) ( ) ( )†,, , sΨ ≈ Ψ + ∇ Ψ x sx s x s ∆s  (3) 

where s   is the set of sensor parameters around which the 
expansion is performed, ∆s  is the deviation in sensor 
parameters from the expansion point, s∇  is the 5D gradient 

operator that takes first-order derivatives of the received 
phase with respect to each of the sensor’s five parameters, 

and ( )†⋅  denotes the matrix transpose operation.  We ignore 

the first term on the right side of (3) since it does not vary 
with sensor parameters.  Then, we expand the last term in (3) 
around the two dimensions of the scatterer location.  Using 
similar notation for the scatterer location expansion point, x , 
the deviation from the expansion point, ∆x , and the 2D 
gradient operator, x∇ , the received phase becomes 

( ) ( )† † †
, ,

† †
0

, s x s

s

  Ψ ≈ ∇ Ψ + ∇ ∇ Ψ    
 = + 

x s x s
x s ∆x ∆s

k ∆x Λ ∆s
 (4) 

where sΛ  is coined the sensor transformation matrix. 

This matrix has an interesting interpretation that can be 
seen by taking its singular value decomposition (SVD).  
There are two non-zero singular values, 1σ  and 2σ , in the 

decomposition; therefore, there are two eigenvectors for the 
columns of sΛ , 1u  and 2u , and two eigenvectors for the 

rows of sΛ , 1v  and 2v .  Writing (4) in terms of the SVD, 

we have 

( ) ( )( ) ( )( )† † †† †
0 1 1 1 2 2 2

†
0

,

k kα β

Ψ ≈ + σ + σ

= + α + β

x s k ∆s ∆x u v ∆s ∆x u v ∆s

k ∆s
 (5) 

where †
1 1kα = σ ∆x u , †

2 2kβ = σ ∆x u , †
1α = v ∆s , and 

†
2β = v ∆s .  We can now see that sΛ  transforms the 5D 

sensor system into a synthetic 2D system.  The axes of the 2D 
synthetic sensor are 1v  and 2v , and sensor coordinates in the 

2D system are given by †
1α = v ∆s  and †

2β = v ∆s .  

Likewise, the frequencies measured by the two axes of the 
synthetic sensor are obtained through 1u  and 2u .  These 

frequencies are †
1 1kα = σ ∆x u  and †

2 2kβ = σ ∆x u .  The two 

synthetic sensor coordinates retain all the information 
collected by the five dimensions of the actual sensor.  In 
addition, orthogonality of the eigenvectors means that the two 
synthetic sensor dimensions are also orthogonal. 

Last, we perform a similar transformation for the 
transmitting antenna.  Expressing similar derivatives for the 
two scatterer locations and the three transmit antenna 
dimensions, the transmit radiation pattern is 

( ) ( ) ( )†exp
A

l l
S

g w j d= − ∆∫x l ∆x Λ l l  (6) 

where ( )lw l  is the antenna amplitude taper, AS  is the 

surface of the antenna’s conductor or aperture, the vector, l,  
describes a point on the antenna surface, and lΛ  is called the 

antenna transformation matrix. 
 

IV.  SENSOR RESOLUTION 
 

Radar resolution is traditionally considered in terms of the 
correlation between two adjacent targets.  This correlation 
can be expressed in terms of a matched-filter response; 
therefore, we begin by determining the output of a matched 
filter in the presence of two targets.  The filter is matched to 
the first signal, which is due to a target at =x x .  We assume 
a Gaussian amplitude taper on the transmit aperture with a 
width and orientation described by the matrix of second 
moments, lJ .  Therefore, the received signal due to a 

scatterer at x  with a scattering coefficient of 1γ  is 

( )
( )

( ) †1
0 02, expd w j g

R

γ  = − x ∆s ∆s k ∆s
x

, (7) 

and the received signal due to a scatterer at +x ∆x  with a 
scattering coefficient of 2γ  is 

( )
( )

( ) †2
02

†† †
0

, exp

1exp exp
2s l l l

d w j
R

j g

γ  + = − +

  × − −    

x ∆x ∆s ∆s k ∆s
x ∆x

∆x Λ ∆s ∆x Λ J Λ ∆x
. (8) 
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We let the sensor taper, ( )w ∆s , be 5D jointly Gaussian with 

widths and orientation described by the matrix of second 
moments, sJ .  Then, the output, ξ , of the matched filter is 

( )† ††
1 2

1exp
2 s s s l l l

 ξ = γ + γ − +  
∆x Λ J Λ Λ J Λ ∆x . (9) 

The first term on the right side of (9) is the desired 
reflection coefficient of the first scatterer.  The second term 
represents error due to leakage of the second target into the 
filter output.  It depends on the exponential term, which we 
now recognize as the correlation between the two scatterers.  
If we say that two targets are resolved when their correlations 
drop to a specified level, cκ , then the equation that defines 

resolution is 

( )† ††2 ln c s s s l l l− κ = +∆x Λ J Λ Λ J Λ ∆x , (10) 

which is the equation for an ellipse. 
 

V.  SIMULATIONS 
 

Using (10), we have predicted the resolution ellipses for 
two cases and compared them to ambiguity functions 
obtained numerically.  In the first case, Gaussian tapers were 
used for the time and frequency sensor dimensions.  A 
uniform taper, however, was applied across the physical 
array, with the spatial-dependent elements of sJ calculated 

according to the sampled second moments of the uniform, 
sparse array.  Fig. 1 compares the theoretically predicted 
resolution ellipse and the numerically calculated ambiguity 
function.  The amount of correlation chosen for the definition 
of resolution was 0.707cκ = .  In Fig. 1, the scenario is 

forward looking with a very large physical array of microsats.  
We see that the ellipse overlaid on the ambiguity function 
accurately predicts the size and orientation of the ambiguity 
function’s mainlobe.  The axes of the resolution ellipse do not 
align with the along- and cross-track directions because of the 
forward-looking scenario and the random orientation of the 
large, sparse array.  Also, since the physical array is the 
dominant factor in determining the ambiguity function, and it 
is sparsely sampled, we see that sidelobes in Fig. 1 are very 
high. 

Finally, we provide an example where each sensor 
parameter is uniformly tapered.  The sampled second 
moments are used for each element of sJ , and the result is 

seen in Fig. 2.  We see that the Gaussian assumption used to 
derive (10) is not as restrictive as it may appear. 

 
VI.  CONCLUSIONS 

 
With the desire to implement radar on spaceborne platforms 
comes the desire to have one radar system perform in 
multiple radar modes.  In addition, the performance 
parameters of those modes may need to be reconfigurable.  
As a result and considering the possibility of constellation-
type implementations of spaceborne radar, more robust 

 
Figure 1.  Theoretical vs. numerical resolution. 

 

 
Figure 2.  Theoretical vs. numerical resolution for uniform tapers. 

 
methods of characterizing radar performance parameters are 
needed.  We have derived a method of characterizing radar 
sensor resolution for a wide range of radar configurations 
including look scenarios and sensor amplitude tapers.  The 
characterization is based on projection of the sensor’s five 
measurement parameters into an equivalent 2D synthetic 
aperture.  The sensor transormation matrix also transforms 
the width of sensor parameters such as bandwidth, integration 
time, and array size into the width of the 2D synthetic 
aperture.  Once this 2D width is determined, the size of the 
resolution ellipse on the ground can be readily determined.  
The effectiveness of our method was demonstrated with 
several simulations. 
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