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Abstract-For SAR to perform correctly, the number of unique 

measurements obtained by the radar (i.e., the rank of the 
received signal�s covariance matrix) must be greater than the 
number of pixels illuminated.  For a single aperture SAR, the 
coherent processing interval (CPI) and bandwidth determine the 
number of independent measurements collected; therefore, the 
received time-bandwidth product limits the maximum 
unambiguous illumination area, or swathwidth. 

For a multiple aperture SAR (MSAR), however, the rank of 
the received signal is not as easy to determine.  When the array 
is large, its beamwidth determines resolution rather than the 
radar�s bandwidth and CPI length.  Furthermore, redundant 
lags in the space-time-frequency co-array reduce the amount of 
unique information collected. 

This paper generalizes the theory behind determining the 
rank of a signal received from stationary targets.  Resolution is 
determined by all radar parameters including CPI length, 
bandwidth, and array extent.  The co-array concept for antenna 
arrays, which is a measure of the lags sampled in the array�s 
spatial covariance matrix, is extended and applied.  A hybrid co-
array is derived that indicates lags sampled in the hybrid space-
time-frequency space.  The hybrid co-array is then applied to 
signals received by MSAR to show that the number of unique 
lags in the hybrid co-array limits the number of unique samples 
collected.  The results provide important analysis tools for 
MSAR systems that are likely in the future, especially sparse, 
constellation-flying satellite systems. 

 
I.  INTRODUCTION 

 
Recently, there has been more interest in multiple aperture 

SAR [1].  These systems propose multiple flying platforms, 
each with their own receivers.  However, since the receivers 
are located on independent vehicles that must maintain a safe 
separation distance, the spacing between elements may be 
large.  Consequently, the arrays for such systems will be large 
in size and sparsely populated.  In addition, if fuel budgets 
require that satellite platforms orbit with minimal propulsion, 
the radar designer will not have control over aperture 
placement.  To the radar engineer, the array structure will be 
known but arbitrary.  With large, sparsely populated, 
arbitrarily sampled arrays, come high sidelobes and the 
potential for grating lobes.  Therefore, we must determine 
how to evaluate the number of independent samples, 
resolution, number of illuminated pixels, and ambiguity 
functions of such systems.  The number of illuminated pixels 
that can be uniquely identified is known as the stationary 
target rank, or clutter rank for moving target indication 
(MTI).  For unambiguous SAR images, stationary target rank 
must be equal to the number of illuminated resolution cells.  
However, it is difficult to determine these system parameters 

for the types of arrays mentioned.  For example, the axes of 
the resolution ellipse can rotate away from the along-track 
and cross-track directions when array beamwidth determines 
resolution rather than bandwidth and CPI length. 

In Section II, we derive a rule for stationary target rank for 
the sidelooking case and show that it reduces to Brennan’s 
rule [2] with the correct assumptions.  In Section III, we 
extend the co-array concept for antenna arrays to a synthetic 
co-array made from data sampled in spatial position, time, 
and frequency.  The number of unique lags sampled in this 
co-array is an upper bound to the rank of the received signal.  
In Section IV, we present a method for determining the 
synthetic co-array and true axes of the resolution ellipse for 
non-sidelooking geometries and large arrays.  Our 
conclusions are in Section V. 

 
II. RANK PREDICTION FOR SIDELOOKING GEOMETRIES 

 
The geometry used in this paper is the same as used by [2] 

and is shown in Fig. 1.  The receive platforms all travel in the 
x-direction.  For sidelooking radar, the approximate received 
signal as a function of frequency, time, and spatial position is 
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where 0k  is the wavenumber at the carrier frequency, 0f  is 

the carrier frequency, , ,x y z
nr  are the x, y, and z locations of 

the nth receiver, v is the velocity of the radar platform, iθ  is 
the elevation angle to the target at the center of illumination, 
h is the altitude at the center of the array, and f is the 
baseband frequency of the received pulse.  The narrowband  
 
 
 
 
 
 
 
 
 
 

Fig. 1. SAR geometry. 

v 

φ 

θ 

y 

x 

z 

0-7803-7033-3/01/$10.00 (C) 2001 IEEE



approximation for the spatial component has been applied.  
Also, a narrow beamwidth has been assumed so that range 
can be approximated using the small angle sine 
approximation.  In (1), we see that the along-track component 
is a sinusoid of spatial frequency 0cos sinθ φ λ  sampled at a 

position given by ( 2x
nr vt+ ).  Van Trees [3] said, “…when a 

bandlimited process [-W, W] is observed over a T-second 
interval, there are only (2TW + 1) significant eigenvalues.”  
Hence, the rank of the along-track signal is approximately 
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0
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where Lx is the array’s along-track size and T is the CPI 
length.  Writing (2) in terms of along-track spatial bandwidth, 

az
sB , and Doppler bandwidth BD, the stationary target rank is 

 

1az
az s x Dr B L B T= + + .            (3) 

 
With a similar approach, the cross-track component’s rank is 
 

1el
el s elr B L B= + ϒ + ,            (4) 

 

where el
sB  is the elevation spatial bandwidth, elL  is the 

cross-track array extent orthogonal to the vector directed 
toward the center of the illuminated area, B  is the system 
bandwidth, and ϒ is the width of illuminated delays.  Since 
the along-track and cross-track components are independent, 
the total rank observed due to a 2-D patch of ground is the 
product of the rank of the two components, 
 

s az elr r r= .             (5) 
 
With the proper assumptions, (5) reduces to Brennan’s rule 
given in [2].  First, rank calculations are for a single range 
bins so that rel = 1.  Second, an airborne, sidelooking scenario 
is assumed so that iθ is small.  Third, we assume a fully filled 
array with half-wavelength interelement spacing, d, and pulse 
repetition interval (PRI) related to the spacing by, 
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At this point, the rank is 
 

( ) ( )01 2 1 PRI 1az
s az s Dr r B N B M= = − λ + − + ,         (7) 

 
where N is the number of receive elements and M is the 
number of transmitted pulses.  Last, if the antennas have no 
directivity in azimuth, then az

sB  is 02 λ , BD is 04v λ , and 
using (6) we arrive at Brennan’s rule, 
 

( )1sr N M= + − β .            (8) 

III.  SYNTHETIC ARRAY AND CO-ARRAY 
 

In reality, the above rules for the rank of illuminated 
stationary targets are bounds, not always equalities.  There 
must also be enough unique lags in the space-time-frequency 
measurement covariance matrix.  Referring to array theory, 
we see that a sparse array can still have an unambiguous 
pattern if the co-array is properly filled [5].  The co-array is 
the autocorrelation of the physical array.  Applying this 
theory to our situation, we define a synthetic array out of our 
measurements in space, time, and frequency, and then take 
the autocorrelation of the synthetic array to get the synthetic 
co-array.  The number of unique lags sampled in the synthetic 
co-array bounds the stationary target rank. 

First, we define a hybrid coordinate system that transforms 
space, time, and frequency samples into a 2-D synthetic 
array.  For sidelooking, one dimension is obvious and 
corresponds to the traditional synthetic array that is the basis 
for SAR.  This dimension is in the along-track direction with 
samples located according to 
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for every receiver and transmitted pulse.  The second 
dimension is perpendicular to the along-track direction and to 
the position vector pointing from the center of the array at 
time zero to the center of the illuminated area with samples 
located at 
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Note that (9) and (10) are seen in (1) where they sample 
spatial frequencies proportional to cos sinθ φ  and 

( )sin iθ − θ , respectively. 
Using (9) and (10), we form a 2-D synthetic array from our 

measurements in space, time, and frequency, then correlate 
the array with itself to get a co-array.  The magnitude of the 
co-array indicates the number of times a particular lag is 
sampled while the number of nonzero elements of the co-
array indicates the number of unique lags sampled.  This 
gives a tool for determining if a particular multiple aperture 
system satisfies the sampling requirements necessary to 
unambiguously identify all illuminated pixels.  A sample 
synthetic array and it co-array are shown in Fig. 2. 

 
IV.  EXTENSION TO ALL LOOK GEOMETRIES AND ARRAYS 

OF LARGE EXTENT 
 
Thus far only sidelooking geometries have been 

considered.  Also, it has been quietly assumed that resolution 
is governed by signal bandwidth and CPI length rather than 
by array size.  If either of these assumptions are not valid, 
then the two independent directions of resolution and the 
coordinate system of the synthetic array are not easy to 
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determine.  We need a method for determining the natural 
coordinate systems for any given system geometry, including 
sparse, irregularly sampled arrays. 

We write the received phase as a function of all sensor 
parameters and target position and expand the phase around 
sensor parameters and target position using Taylor’s theorem.  
Then holding one target position fixed, we allow a second 
target’s position to vary.  The resolution ellipse is defined by 
correlating the phase responses over all sensor parameters 
and setting the correlation equal to a constant.  The result is 
 

2
0 0

S

dS sC ′ ′ ′ ′ ′= =∫0 0∆xΛ ∆s∆s Λ ∆x ∆xΛ J Λ ∆x ,       (11) 

 

where ( )′  denotes the transpose operation, ∆x  is the vector 
of position deviation from the first target, ∆s  is the deviation 
of sensor parameters from their mean values, 0Λ  is a matrix 
defined as 
 

( )0
,

,s x
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s x
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s∇  is the gradient operator over sensor parameters, x∇  is the 
gradient operator over target position, ( ),Ψ s x  is the phase 
function, s  is the vector of mean sensor parameters, x  is the 
position vector of the first target, and the integration is 
performed over the range of all sensor parameters.  Equation 
(11) defines an ellipse, and the axes of the ellipse are the 

eigenvectors of 0s
′

0Λ J Λ .  Also, if we compute the singular 
value decomposition of 0Λ , the two basis vectors for its 
columns project our 5-D measurement vectors into a 2-D 
synthetic array.  Again, the autocorrelation of the synthetic 
array produces the synthetic co-array that can be used to 
determine how many unique lags have been sampled.  The 
two basis vectors for the rows of 0Λ  project the (x,y) 
coordinates of the targets into the two spatial directions 
measured by the axes of the synthetic array.  The ambiguity 
function for an arbitrary geometry and array has been 
calculated and is shown in Fig. 3.  The ellipse calculated 
using (11) is plotted over the top of the ambiguity function 
and shows excellent agreement. 
 

V.  CONCLUSION 
 
We have proposed a method for calculating the axes of the 
resolution ellipse for a multiple aperture system of arbitrary 
size and sample distribution.  Once two independent 
directions of resolution are found, they can be used to predict 
the number of pixels, or stationary target rank, illuminated by 
a radar system.  We have shown that the total rank is the 
product of the rank of two independent dimensions. 

(a) (b)

 
Fig. 2.  (a) Synthetic array and (b) co-array made from 4 

receivers with 3 frequency samples and 3 time samples each. 
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Fig. 3.  Ambiguity function for a forward-looking scenario. 

 
Furthermore, we have established a foundation for calculating 
the rank in each dimension, rather than relying on intuitive 
arguments and strict assumptions as has been done in the past 
for traditional MTI systems.  When the proper assumptions 
are made, we agree with previous expressions for rank.  Last, 
we have described how to compute the synthetic co-array 
from space, time, and frequency data and described how 
redundant lags may result in reduced rank and ambiguities. 
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