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Abstract
New and emerging technologies make it possible to capture and deliver digital
video information.  In general, the techniques used to index video information
require source manual intervention, source specific information and/or are
computationally expensive.  In order to provide access to video footage within
seconds of broadcast, we have developed a new pipelined digital video processing
architecture which is capable of digitizing, processing, indexing, and compressing
video in real time on an inexpensive general purpose computer.   These videos
were automatically partitioned into short scenes using video, audio and closed-
caption information.  The resulting scenes are indexed based on their captions and
stored in a multimedia database.  A client-server-based graphical user interface was
developed to enable users to remotely search this archive and view selected video
segments over networks of different bandwidths.  Additionally, VISION classifies
the incoming videos with respect to a taxonomy of categories and will selectively
send users videos which match their individual profiles.  Recent work has focused
on efficient key frame extraction to support browsing and real-time feature
extraction to support image-similarity based retrieval.
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1. Introduction

As a result of tremendous progress in video compression and transmission, the use
of digital video in multimedia systems and over the Internet is becoming pervasive.
In order to make intelligent use of this valuable resource, there is a need for
content-based indexing and retrieval of digital video.  This has motivated video
library research at a number of institutions.

The VISION (Video Indexing for Searching Over Networks) digital video library
system was developed in our laboratory as a testbed for evaluating automatic and
comprehensive mechanisms for library creation and content-based search and
retrieval of video over local and wide area networks (Gauch et al., 1994, 1995, 1997).
Our initial system was designed as an archival site for selected science and news
videos from WGBH and CNN.  These videos were automatically partitioned into
short segments based on their content and stored in a multimedia database.  A
client-server-based graphical user interface was developed to enable users to
remotely search this library via keyword-based queries and view selected video
segments over networks of different bandwidths.

The value of any library is related to both the volume and timeliness of the
information it contains.  Digital video libraries are no exception.  Ideally, we would
like to have video footage added to the library within seconds of broadcast.  In order
to achieve this goal, it is necessary to perform video digitization, segmentation and
compression in real time.  To address this problem, we have developed a new
pipelined digital video processing architecture which is capable of digitizing,
processing, indexing, and compressing video in real time on an inexpensive general
purpose computer.  VISION has also been extended to operate as an information
filtering system, classifying video and sending it to users whose profiles contain the
matching categories (Gauch et al, 1998).  Preliminary work has been done on
keyframe extraction and feature analysis to support archive browsing image based
querying.

The design and implementation of this new system is the subject of this paper.
Section 2 describes related work in digital video libraries.  Section 3 describes our
software architecture for real time video analysis.  Our pipelined video
segmentation algorithm is described in Section 4.  Our segmentation results are
discussed in Section 5.  Finally, Sections 6 and 7 discuss our keyframe extraction and
analysis techniques and our conclusions and future work, respectively.

2.  Related Work

Digital video libraries distinguish themselves from traditional "video-on-demand"
services or other similar projects in that they integrate image and video processing
and understanding, speech recognition, distributed data systems, networks, and
human-computer interactions in a comprehensive system.  A key component of
this difference is the use of content-based indexing and retrieval algorithms to
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enable users to interact with the video library rather than simply playing back entire
movies or broadcasts.  As a consequence, there has been considerable activity
developing improved tools for video processing and content analysis.  There has
also been important progress made developing real-time multimedia systems
capable of displaying video to users on different platforms and over a variety of
networks.   Systems which share features and goals with the VISION system are
described below.

Several approaches have been proposed to decompose raw video into shots (a
continuous roll of a camera) and scenes (collections of shots which occur in a single
location or are temporally unified).  It is important to note that the above
definitions follow usage defined by (Hampapur, 1994) whereas some authors use the
word scene to refer to a sequence of video representing continuous action and story
to refer to a sequence of scenes.  The problem of identifying cuts (sharp transitions
between shots) has been typically approached from a bottom up perspective, looking
for rapid changes in color histogram or image intensity (Arman, 1993; Nagasaka,
1992; Zhang, 1993).  Model-based algorithms have also been developed to
successfully detect fades, dissolves, and page translate edits (Hampapur, 1994).  Once
shots have been identified, keys frames which characterize the shot can be selected
by considering the motion of objects within the shot.  Here, we can either select
frames which are as still as possible (Wolf, 1996) or identify the background and
moving objects explicitly and select an image which focuses on one or the other
(Sawheney, 1996).  Another related approach is to combine information from
multiple frames of an image sequence to create a "salient video still" which
characterizes the shot in some way (Teodosio, 1993) or other forms of visual
summaries (Irani and Anandan, 1998).  Once selected, keyframes may themselves be
analyzed to extract features to support color, texture, shape, motion or other feature-
based These methods vary considerably in their computational complexity and
effectiveness for different video sources, but each has its merits.

Although the problem of shot detection is essentially solved, the problem of
combining shots to obtain scenes presents significant challenges.  One approach used
by the Princeton Deployable Video Library (PDVL) (Wolf, 1995) is to use identify key
frames in each shot and use image-based clustering to construct a scene transition
graph to visually present the relationships among shots.  By browsing through a
collection of graphs users can locate scenes of interest (e.g., two person interviews).
The scene transition graph can then be used to navigate through the video.  The
Algebraic Video System (Weiss, 1995) uses an alternative technique where shots are
organized in a hierarchical structure which allows nested stratification (subtrees
may refer to overlapping portions of the raw video).  This system uses the
VuSystem (Lindblad, 1994) for recording and processing video but hierarchy
construction is currently performed manually.  A model-based approach has been
proposed to parse video by an a priori model of the video structure (Zhang, 1995;
Zhang et al, 1997).  Such a model represents a strong spatial order within the
individual frames of shots and/or strong temporal order across a sequence of shots.
For example, it is required that all shots of the news anchorperson conform to a
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spatial layout.  For many tasks it will be difficult or impossible to define models for
the video.  In their system the text description of the video contents are input by an
operator.  This yields high accuracy but makes production of large video collections
very expensive.

Automatically identifying the content of a video segment is a particularly
challenging problem.  Three basic approaches have been investigated for this
purpose:  image understanding, speech recognition, and caption processing.
Although the human visual system is very effective, research in computer vision
over the past 20 years has had success in only limited domains (Haralick and
Shapiro, 1992).  For this reason, many approaches for image-based content
identification have focused on feature-based classification schemes.  For example,
images can be indexed using color histograms (Swain, 1991) or combinations of
shape and color features  (Smoliar, 1994).  The QBIC (Query By Image Content)
project (Faloutsos, 1994) investigated methods to query large on-line image databases
using the image contents, such as color, texture, shape, and size.  Although feature-
based classification is quite fast, one drawback is that very different objects may have
the same features (e.g., a red car and a red apple).

Moving away from pure feature-based matching, it has been shown that similarity-
based image retrieval can be also accomplished using Hidden Markov Models
(HMM) which have been trained with representative images of outdoor scenes
(rivers, trees, mountains) (Yu, 1995).  Multiresolution wavelet decompositions have
also been used for rapid image matching and retrieval (Jacobs, 1995).  Here, a low
resolution example (either hand drawn or scanned) is used as a query and
multiscale matching is used to locate the most similar image in the database.  More
ambitious indexing based on texture, shape and appearance have been investigated
within the Photobook system (Picard, 1994; Pentland, 1996).  Although this system
has had excellent success within a restricted domain of images (textures and faces)
the computational expense associated with computing Eigenimages may limit its
use for identifying video content.

Given the difficulty of image-based content analysis, processing the audio track and
closed caption information is an attractive alternative.  The goal of the Informedia
Digital Video Library project is to establish a large, on-line library featuring full
content and knowledge-based search and retrieval of  digital video, primarily for
educational purposes (Christel, 1994; Christel, 1995; Wactlar, 1996).  Informedia's
News-On-Demand system (Hauptmann and Witbrock , 1997)  specifically addresses
the problem of providing efficient access to news videos which requires entirely
automatic segmentation and indexing.  News-On-Demand uses the video, audio
and closed captions for segmentation and also includes a large-vocabulary, speaker-
independent, continuous speech recognizer.  Speech recognition allows them to
align the closed captions with the video and to provide words for indexing where
closed captions are unavailable.  Their archive is built using MPEG-II for the video,
with one Pentium PC used for the digitization and a supplementary platform for the
SPHINX-II speech recognition system.
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The VISION system (Gauch, 1994, 1995, 1997) shares many of the goals of the News-
On-Demand project, but we further constrain the problem by requiring a system
which is capable of making all news stories available within seconds of their
broadcast.  In addition, we have designed the system to run continuously on a dual-
processor Pentium PC.  Thus, one can monitor multiple broadcast channels cost-
effectively by devoting one commodity computer per channel, all of which feed the
indexing information to a central database.  Because of these constraints, we perform
limited processing of the audio track during automated scene segmentation and
content analysis.  In particular, audio information is used only to combine shots.
Closed captions are required in almost all television broadcasts, and is a valuable
source of information for video segmentation.  The text associated with each scene
is also used as input to our full-text retrieval engine to search the video library for
material of interest.  Our major contribution is an exploration of what can be
achieved in entirely automatic archive construction running real-time on
commodity hardware.

3.  System Architecture and Implementation

A wide variety of software and hardware products are available to digitize and
compress full color video images at frame rates up to 30 fps.  Unfortunately, once
the video stream has been compressed, it is difficult to perform content-based
segmentation without first decompressing the signal.  Since decompression takes
almost as long as compression, the time required to post-process this material to add
segmented video to the library is proportional to the length of the broadcast.  This
delay is unacceptable for a "live" digital video library.

Our solution to this problem is to extract video, audio and closed caption features as
the video is digitized and use this information to segment the video into
meaningful clips in real time.  The digitized audio and video frames associated with
each scene are then compressed and placed in the multimedia database within
seconds of their broadcast.  The pipelined system runs on a dual-processor Pentium
PC and produces RealMedia format videos.  The real-time performance, commodity
hardware and software compression all provide serious constraints on our
algorithm complexity.

Our new video processing system consists of four components:  (1) the video capture
and feature extraction (VCFE) module, (2) the video segmentation and compression
(VSC) module, (3) the content classification and indexing (CCI) module, and (4) a
graphical user interface (GUI) for controlling video acquisition, segmentation, and
compression parameters.  These modules execute in separate threads and
communicate through shared memory data buffers.

3.1  The VCFE module
The Video For Windows (VFW) library from Microsoft is used to interface with the
video and audio digitizer.  Digitization of audio and video frames is performed by
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system level routines and the resulting data is stored in a set of VFW data buffers.
Two callback routines are triggered, one for audio and one for video, which allow
the user to access the digitized data within the VFW buffers.  In order to ensure that
no audio or video frames would be lost, we do not perform any disk I/O or
audio/video compression within these callbacks.  Instead, we perform audio/video
feature extraction to calculate E(t), B(t), dP(t), h(c,t), and dC(t) for each frame, and
copy this information together with the digitized audio and video into a larger
circular buffer pool in shared memory for use by other modules.

The VCFE module also captures closed captions using a third VFW callback which is
invoked every 1/30th of a second (the same frame rate as the audio/video capture).
In this function, we read the parallel port to obtain the two characters of caption data
which has been extracted from the video frame and decoded by the TextGrabber.
These characters are then processed to break the captions into tokens (words) and
perform the necessary stemming and stopword removal.  The remaining words are
saved in a shared memory buffer together with timing and word frequency data.

3.2  The VSC module
The VSC module performs the important task of real time video segmentation, and
controls the audio/video compression.  Before segmentation begins, we wait until
several seconds of audio/video and closed captions have been buffered.  We then
apply the shot and scene detection algorithms described in Section 4.  The data
provided by the VCFE module is used to detect shot boundaries and perform audio-
based shot merging.  Text analysis functions are invoked at the remaining shot
boundaries to calculate T(t) and D(t) and determine if caption-based merging is
needed.  This generates starting and ending frame numbers of scenes which in turn
are used to control the software video compression process.

We perform software-based audio/video compression using a SDK produced by
Real Networks (formerly Progressive Networks) which outputs digital video in
RealMedia format.  This obviates the need for special purpose MPEG/JPEG video
compression hardware, while also providing low bit rate digital video compression
suitable for Internet broadcast.  Each video scene is stored in a separate RealMedia
file on disk.  When the end of a scene is detected, the current file is closed and
copied to the video server, and a new output file is created.  A separate video library
client which uses a RealMedia decoder can then be used to retrieve and play back
video clips as soon as they become available.

Because compression requires file I/O and a variable amount of computational time
per frame, it was important to perform this operation in a separate thread from the
VCFE operations which are time critical (frames are lost if audio/video callbacks
take too much time).  On a dual processor system, this also enables our system to
distribute the work load between the two processors.

3.3  The CCI module
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The content classification and indexing phase of our video processing system is
performed after the video associated with a scene has been compressed and the
RealMedia file has been copied to the video server.  The closed captions associated
with each scene sent to the central database for indexing, and content classification is
applied to select the most important words from the closed caption text for use in
classifying the scene (Gauch et al, 1998).  This process is performed by a CCI thread
which sleeps when there is no work to be done and awakens only when there is
new content to be added to the video library.

4.  Video Segmentation

From a logical point of view, production video footage can be thought of as a
collection of scenes which illustrate different subtopics.  Each scene typically consists
of several camera shots which have spliced together in some manner.  For our
current application, each scene would be a news story generally consisting of shots of
the announcer discussing the story, remote shots of reporters giving interviews, and
other shots illustrating the event.  The goals of video segmentation are: (1) to locate
the start and end of each camera shot, and (2) to combine camera shots based on
content to obtain the start and end points of each scene.  In order add "live" news
and information to the video library, it necessary to perform video segmentation in
real time as it is broadcast.

4.1  Shot Detection
The detection of shot transitions can be trivial or complex depending on the video
content being combined and the type of transition used.  For example, when video
from two very different sources are spliced together with zero frames of transition it
is easy to detect the scene change.  On the other hand, if two very similar shots are
combined with a gradual cross fade, the visual changes may be much smaller than
we might expect in a video with moderate object motion.  Thus, it is very likely that
any automated image-based shot detection algorithm will miss some fraction of the
shot boundaries.  Fortunately, this does not impact the quality of the scene detection
greatly because shot transitions which are this gradual are often chosen by producers
when the two shots are actually related and should remain in the same scene.

Several approaches to the problem of automatic location of camera motion breaks in
video sequences have been investigated.  Nagasaka and Tanaka (Nagasaka, 1992)
have evaluated a number of image processing measures for detecting cut edits in
video sequences by detecting shot boundaries in digital video.  Their conclusion is
that the best measurement is the sub-window-based histogram comparison.  Zhang
et al (Zhang, 1993) have also presented the evaluation of different image processing
routines for detection of cut edits.  They tried to detect special effects having gradual
transitions like fades and dissolves by using a dual threshold.  Hampapur
(Hampapur et al, 1994) approached the problem of digital video segmentation by
proposing a model for video based on the production process and classifying video
edit effects based on these models.  The edit effect models are used to design feature
detectors, which are used in a feature-based classification approach to segment the
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video.  Arman, Hsu, and Chui (Arman, 1993) presented a technique operating
directly on compressed video detect shot boundaries.  Their technique relies on the
properties of the coefficients of the discrete cosine transform used in encoding the
video to detect the transitions.

Shot detection in the VISION system is performed by combining three image cues:
(1) the average brightness B(t) of each video frame, (2) the change in pixel values
dP(t) from frame I(t) to frame I(t+dt), and (3) the change in color distribution dC(t)
from video frame I(t) to frame I(t+dt).  These three quantities are compared to
dynamic thresholds to identify potential shot boundaries.  Specifically, we identify
frame t to be a shot boundary if

(B(t) < Bthreshold) or ((dC(t) > Cthreshold) and (dP(t) > Pthreshold))
where
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after the input image has been quantized to 256 uniformly distributed colors.  If the
digitizer produces an 8-bit image directly, we calculate the color histogram using the
colors provided by the digitizer.  When computational time is limited, the
parameters above can be estimated using a sub-sampled version of the input image.
We have obtained almost identical results using 640x480 and 320x240 images.
Acceptable results are also possible with 160x120 images, but accuracy  suffers.

The selection of Bthreshold, Cthreshold, and Pthreshold is challenging because no set of
thresholds will be effective for all sources of production video.  We have addressed
this problem in two ways.  First, we use a priori knowledge of each video producer
(e.g., WGBH, CNN, CNBC) to select initial values for these thresholds based on
which video source is being processed.  Then, we gather statistical information
about B, dC, and dP during video processing to update the thresholds dynamically
every few minutes.

INSERT FIGURE 1 HERE
Figure 1.  Data flow diagram for shot detection.



- 9 -

Our process of shot detection is illustrated in Figure 1.  In this data flow diagram,
raw NTSC video is input.  The Boolean output function shot(t) is true if a shot
boundary has been detected at frame t, and false otherwise.

4.2  Merging Shots to Obtain Scenes
Since many video producers use motion and shot transitions to attract and retain
viewer interest, it is common to have numerous shots per scene.  Merging related
shots back together to identify scenes is very important to avoid excessive
fragmentation of information in the library.  There are two sources of information
which can be exploited for this purpose:  audio cues, and closed caption cues.  Given
our requirement for real time video segmentation, we focus on low level audio
properties.  If someone is talking while there is a shot transition, it is an indication
that the two shots are related and should be merged.  To determine if this situation
occurs, we perform endpoints detection on the audio signal to identify the start and
end of each utterance.  This is done by computing the short-time energy function
using n audio samples centered in time about frame t as follows:

E t A t n k n
k n

( ) ( / )
..

= ⋅ + −
= −
∑ 2
0 1

.

We merge adjacent shots together if E(t) > Ethreshold.  The value of Ethreshold is again
chosen using a priori information about the video source and updated dynamically
using audio statistics.

The second source of information is actually the most important for the VISION
system.  Since closed captions are now embedded in most broadcast video, a
transcription of the audio channel can be obtained by decoding caption data in line
21 of field 1 of each video frame.  In our current system, we use a stand alone
product TextGrabber by Unitec Inc. to capture this information.  One problem with
some video sources is that the closed captions are entered as the show is broadcast.
This introduces a 2-3 second time delay between when words are spoken and when
the transcription appears.  Hence, it is necessary to estimate the time delay and
realign the closed captions with the audio and video.  Incorporating speech
recognition could be used to align the captions with the spoken words and thus get a
more accurate estimate of the delay (Hauptmann and Witbrock, 1997), but this
would require a second computer per broadcast channel and may not operate in
real-time.

Once caption alignment has been performed, it is possible to consider the topics
being discussed on either side of a shot boundary.  If they are similar, although there
is a change of shot, there is no change of scene and the shots should be merged.  For
each shot boundary, we consider the words used within a window of a given
number of frames on either side of the boundary (adjusted by the delay factor).  We
tokenize the closed captions to identify words, then use the Porter stemmer (Frakes
and Baeza-Yates, 1992) to remove prefixes and suffixes, and finally delete the most
frequent English words (stopwords) from the captions in each window.  The
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remaining terms are then weighted, where the weight for term w in video window
v is calculated as follows:

Wt(w, v) = tfwv * idfw
where

fwv  is the frequency of term w in window v
idfw = log2 (freqmax/freqw)
freqmax = frequency of most frequent term in related text collection1

freqw = frequency of term w in related text collection1

We then use the cosine similarity measure (Salton and McGill, 1983) to calculate the
vocabulary overlap, T(t), between the windows to measure content similarity.

T(t)  = Σ Wt(w,v1) * Wt(w, v2)
w in v1

where
v1 is video segment from t-windowsize -> t
v2 is video segment from t -> t+windowsize

We merge adjacent shots when T(t) > Tthreshold.  To perform this text analysis in real
time, we make extensive use of special purpose hash tables for fast lookup into the
stopwords list and our lexicon of 40,000 words and their frequencies in a news
related corpus (three years of the Wall Street Journal).  For example, if shot A
contains the words "the photographer saw the elephant" and shot B has the words
"three photographs of the animal were taken", frequently occurring stopwords such
as "the" would be removed and after stemming we would be left with "photograph
elephant" and "photograph animal".  Since "photograph" occurs in both captions
and this word is relatively rare in the lexicon (and thus has a high idf value), the
value T(t) would be high and these clips would be merged.

Finally, there is an additional closed caption cue which is helpful in certain
situations.  A change in speaker is often marked by the symbol ">>" in the closed
captions.  Similarly, a change in topic may be indicated by the symbol ">>>".  Thus,
we apply the heuristic that if there is a change in topic symbol which is close to the
shot transition, then we override any audio cues or word similarity cues and
prevent potential shot mergers.  As the caption text is processed, we calculate the
distance D(t) in frames to the nearest ">>>" symbol.  We do not merge adjacent
shots if D(t) > Dthreshold.

INSERT FIGURE 2 HERE
Figure 2.  Data flow diagram for scene detection.

1The word frequency statistics from 3 years of the Wall Street Journal are used.
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The VISION scene merger process is illustrated in Figure 2.  The raw NTSC signal
and the shot(t) function are inputs.  The Boolean output function scene(t) is true if a
scene boundary has been detected at frame t, and false otherwise.

4.3  Segmentation Examples
The identification of shot boundaries using video information is relatively
straightforward if there is a single frame transition between one shot and the next.
Gradual shot transitions and wipes are more challenging to detect.  This is where
the combination of pixel differences and color histogram differences assist in
distinguishing shot boundaries from locations where rapid motion in the video
sequence occurs.  Figures 3-5 illustrate sequences of four frames from CNN Headline
News where our system has correctly identified shot boundaries.

INSERT FIGURE 3 HERE
Figure 3.  Example 1 of shot boundary detection.  There is a topic change
symbol, ">>>" nearby, so this becomes a scene boundary.

INSERT FIGURE 4 HERE
Figure 4.  Example 2 of shot boundary detection.  The audio energy is high
here, so no scene boundary is detected.

INSERT FIGURE 5 HERE
Figure 5.  Example 3 of shot boundary detection.  The audio energy is high
here, so no scene boundary is detected.

The use of audio and closed caption information to detect scene boundaries is also
demonstrated in these examples.  Figure 3 demonstrates the use of the ">>>" clue in
the closed caption to correctly identify this shot boundary as a scene boundary
although the audio levels were below the audio threshold.  The audio energy at the
shot boundary in Figure 4 was found to be above the audio threshold, so these shots
were merged together by our segmentation algorithm.  Finally, the words in the
closed captions were used to merge the two shots shown in Figure 5 although the
audio levels were below the specified threshold.

5.  Evaluation of Segmentation Results

To evaluate the accuracy of our video segmentation results, we conducted a number
of experiments processing videos which were hand segmented to identify the "true"
scene locations.  Overall, the accuracy of our results are quite good, although there is
a tendency to over-segment the input video, breaking news stories and commercials
into several parts.   To better understand the interactions of the video, audio, and
closed caption features when partitioning the video into scenes, we conducted four
experiments: (1) video only segmentation, (2) video segmentation with audio
merging, and (3) video segmentation with audio and caption based merging.
Although many values for the various thresholds were evaluated, for brevity, only
the results with the best threshold settings are shown here.
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5.1  Video Only Segmentation
To evaluate video only segmentation we varied the values of Pthreshold and Cthreshold
while disabling audio and caption based shot merger.  (i.e., Ethreshold = maxint,
Tthreshold = maxint, Dthreshold = 0).  The position of true scenes boundaries in two
hours of broadcast news were determined by visual inspection and used to evaluate
the quality of our segmentation results.  We calculate the ratio of the number of
correctly detected scene boundaries to the number of true scene boundaries to
measure the recall of our system.

recall = # correctly detected boundaries / # true scene boundaries
High values of recall indicate that most of the correct scene boundaries were within
the group of detected scene boundaries.  We use precision to quantify the error due
to over segmentation by computing the ratio of the number of correctly detected
scene boundaries to the total number of scene boundaries detected.

precision = # correctly detected boundaries / # detected scene boundaries
High precision indicates that few false boundaries have been detected.  Ideally, we
would like both recall and precision to equal one, but in practice increases in
precision are at the expense of recall and vice versa.

We ran a series of experiments varying Pthreshold and Cthreshold to determine values
that produced the most accurate shot detection.  Since all possible boundaries are
determined by the video segmentation process, and later processing merely merges
together clips to form scenes, the emphasis during video segmentation is on
increasing recall (the number of cuts correctly found).  Figure 6 summarizes the
results found when varying Pthreshold and Cthreshold.  The best results (recall = 94%,
precision = 11%) were achieved with Pthreshold and Cthreshold each set at 70.

INSERT FIGURE 6 HERE
Figure 6.  The effects of varying the pixel difference threshold, Pthreshold, and
the color histogram difference threshold, Cthreshold, on recall and precision.

5.2  Video/Audio Segmentation
For the video segmentation phase, we were mostly concerned with obtaining high
recall values since audio and caption based shot merger will remove false scene
boundaries.  Using the results from the video segmentation phase, we tested the
audio merging parameter Ethreshold.  We evaluated the results obtained when
Ethreshold was set to a wide range of constant values.  However, since different video
sources have very different audio properties, selecting the audio threshold
dynamically based on the observed audio energy levels performed better than any
fixed value for Ethreshold, and dynamic audio thresholds are used for the next
experiment (recall = 81.5%, precision = 24.5%).

5.3  Video/Audio/Caption Segmentation
After the audio merging phase, there are still many incorrect scene boundaries
which need to be removed.  We do this by considering the contents of the closed
captions.  Using the video and audio settings from previous experiments, we
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evaluated the effect of adding closed caption information to the segmentation
process.  There were three main parameters to vary:  the delay between the start of a
scene and the start of the closed caption for the scene (CC-delay); the size of the
closed caption window used for comparison (CC-windowsize); and Tthreshold, the
threshold for closed caption similarity above which shots are merged.  We found
that a delay of 100 frames, a comparison window of 4,000 frames (corresponding to
13 seconds before and after the shot boundary) and a threshold of 7 worked best.
Results with these settings are shown in Figure 7.  The best results (recall = 92%,
precision = 23%) were achieved with CC-delay set at  and CC-windowsize set at 70.

INSERT FIGURE 7 HERE
Figure 7  The effects of varying the delay, CC-delay, and window size, CC-
windowsize, on recall and precision.

5.4  Segmentation Results Discussion
From the results shown in Table 1, we can see that most scene boundaries are
detected by the video segmentation (over 94%).  However, only 11% of the shot
boundaries detected actually correspond to scene boundaries.  In other words, the
average scene is chopped into ten pieces, clearly demonstrating the need for other
techniques merge some shots together.  By adding audio information, the
percentage of boundaries produces that correctly correspond to scene changes has
more than doubled, from roughly 11% to 24.5%.  At the same time, the number of
scene boundaries found has decreased approximately 13.5% from 94.5% to 81.5%.

Segmentation Technique Recall Precision
Video Only 0.9425 0.1087
Video and Audio 0.8150 0.2450
Video/Audio/Captions 0.9200 0.2313

Table 1  Recall and precision values for various scene segmentation
techniques evaluated on two hours of CNN Headline News.  Pthreshold = 70,
Cthreshold=70, automatic audio thresholding, Tthreshold=7, CC-delay=100
and CC-windowsize=4,000.

When we add closed caption information during segmentation, we achieve
precision percentages comparable to those resulting from video and audio
segmentation (23% versus 24.5%) while greatly improving recall (92% versus
81.5%).  In other words, with closed caption information we remove almost as many
false boundaries and far fewer true ones.  In fact, very few true boundaries were
removed since we started with 94% recall after the video phase which decreased
only 2% while precision more than doubled.  On average, 92% of all scene
boundaries are detected and the average scene is split into four pieces rather than
ten pieces which was the case before the merging process began.  Although there is
obviously work remaining to further increase precision, the results are quite
encouraging.

6.  Keyframe Extraction and Analysis
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We wish to perform keyframe extraction for two reasons.  First, the keyframe is used
as the iconic representation of the video shot when the shot is retrieved by the
search engine.  Second, the keyframes for a shot can be analyzed to form the basis of
feature-based shot matching and retrieval.  We developed an efficient keyframe
extraction algorithm and evaluated a series of image analysis techniques for
keyframe indexing and retrieval.

6.1 Keyframe Extraction
Due to efficiency constraints, we concentrated on identifying a single representative
keyframe for each shot rather than attempting to combine frames to produce a shot
summary.  Most keyframe extraction techniques rely on motion estimation.  Since
motion information is stored as part of the MPEG format, this information is readily
available.  However, we use a RealMedia or AVI format for our video and must
calculate our motion estimates, which can be computationally expensive.  To
address this, we defined a new stillness criteria based on a local energy function Ep(t).

  n/2

Ep(t) = 1/n × ( Σ      dP(t+k, 1))
k=-n/2

where
t = time, measured in frame numbers
n = comparison window around frame t, measured in number of frames

dP(t, dt) = Σ  I(x, y, t) – I(x, y, t – dt)
xy

where
I = pixel intensity

This function computes the sum of pixel intensity differences over a sequence of n
frames around a specified frame t.  For each shot, we first identify t0  the frame
which minimizes Ep(t0).  To identify the most representative frame from the n
candidate frames in the window around t0, we select the frame whose brightness is
closest to the average brightness for frames in the window.  We experimented with
different window sizes, varying n between 3 and 20, and found our best results with
values in the range of 5 to 10.  Larger values tended to produce too much
smoothing, missing important, shorter still sequences whereas smaller values were
unable to discriminate between brief periods of stillness and longer, more important
low-motion sequences.
We evaluated our keyframe selection algorithm by having users view 80 minutes of
video which contained roughly 1500 shots.  For each shot, they were asked to rate
quality of the chosen keyframe.  They rated the keyframes as Very Satisfactory (60%),
Satisfactory (35%), or Irrelevant (5%), indicating a high-level of satisfaction with the
keyframe selections (Bouix, 1998).  An example video sequence and the resulting
keyframe (rated as Satisfactory) are shown in figures 8 and 9.  The keyframe selected
focuses on the two main participants, with little extraneous background motion.

INSERT FIGURE 8 HERE
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Figure 8.  A video sequence of 12 frames from a news broadcast.

INSERT FIGURE 9 HERE
Figure 9.  The 9th frame in the sequence above was selected as the keyframe.

6.2 Keyframe Analysis
In order to perform image-based comparison of video frames, we must extract a set
of features from the images.  Building on image database research (Flickner et al,
1995; Pentland et al, 1996; Smith & Chang, 1997), video databases generally index
keyframes using image features such as color (brightness, color histogram,
dominant colors, statistical moments), texture (Tamura features, Markov random
fields, Fourier transforms, wavelet transforms) , shape (moment invariants,
cumulative turning angles), spatial (localized color regions, color correlogram), or
domain specific features (faces, fingerprints, image recognition).
In addition to the visual information video shares in common with image
databases, video databases also incorporate temporal information.  The video
databases are not just collections of frames.  Rather, they are collections of sequences
of frames.  Thus, videos can also be indexed using motion features (Chang et al,
1997; Flicker et al, 1995; Teodosio and Bender, 1993; Zhang et al, 1997) such as camera
motion, brightness and/or color variation, object motion, and mosaic
representations.

We implemented and evaluated real-time indexing of keyframes using color
features.  The video, when captured, uses the red-green-blue (RGB) color space used
in television monitors.  Although this color space is common and straightforward,
it presents a problem when comparing colors within and between images.  Colors in
RGB are not perceptually uniform, i.e., the proximity of colors in RGB space does
not indicate color similarity as perceived by humans.  We therefore convert the
images to the hue-saturation-intensity (HSI) color space which is designed to reflect
the human perception of colors.  Colors with similar values in HSI will be judged
similar by humans and vice versa.  Each pixel of an HSI image contains three values
which range from 0 to 255.  Thus, it can represent 2256 ≈ 16 million different colors.
We used uniform quantization is necessary to map from the set of all possible colors
to a smaller set (18 hues, 4 saturations, 4 intensities = 288 colors) which is more
efficient for image color comparisons but which also adequately represents the range
of colors used in the keyframes.

For each of the 1500 keyframes extracted in Section 6.1.1, we compared the use of
three color features for image indexing and retrieval:  the color histogram (Smith
and Chang, 1997) in both RGB and HSI space and the first three color moments,
mean, variance and skew, (Zhang et al, 1997) with a Euclidean distance similarity
measure.  The color histogram in RGB space adequately retrieved exact matches, the
color histogram in HSI space gave the best results for non-identical matches.
Confirming the results reported by Zhang, we found that the color moments were
the method of choice.  The results were nearly comparable to those produced by the
HSI color histogram method, but the color moment is more efficient since it
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requires only nine numbers (three moments for each of the three color dimensions,
RGB or HSI) to be compared versus 288 numbers for the color histogram method.

INSERT FIGURE 10 HERE
Figure 10.  The results of matching based on three color moments.  The frame
in the top left-hand corner is the query frame.  Matches are in rank order, left-
to-right, top-to-bottom.

We also implemented and tested a shape feature, invariant moments (Arman et al,
1994) which are efficiently computed.  They provide the ability to match on the
shape of objects contained in the images, although the rank ordering of the top
matches was not as accurate as that produced by the color moments.  Finally, we are
working on indexing frame regions (e.g., quadrants) rather than entire frames and
combining the two moment based features into a single retrieval algorithm.

7.  Conclusions and Future Work

Our real time video segmentation and classification system is now fully operational.
It can continuously capture, segment, compress, classify, index and store video clips
from a live broadcast feed in real-time.  In addition to the new pipeline architecture,
we also presented our segmentation algorithm which fuses three sources of
information:  video, audio and closed-captions.  This provides much higher scene
detection accuracy than that realized with just video alone or video plus audio.
Finally, we describe our keyframe extraction and analysis algorithms which form
the basis of our video browsing and image-based querying capabilities.  Since all
processing is completely automatic, multiple installations of the VISION system can
be used to monitor multiple video feeds simultaneously with little or no burden on
the archive staff.  It is currently in around-the-clock commercial operation, indexing
CSPAN and CSPAN-2 for the Worldwide Broadcasting Network (www.wbnet.com).

Future extensions to the VISION system may also include improvements to the
video processing component of the VPS.  For example, we could incorporate motion
analysis to reduce the over-segmentation we experience.  Audio processing could
also be enhanced to reduce over-segmentation through the use of speaker
identification.  Our current focus is on clustering the keyframes to automatically
construct a browsing hierarchy for the video archive and examining quality of
service issues in video delivery.
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