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Abstract

In performance / dependability modeling, it sometimes happens that two events are

scheduled to occur at the same time. In this case, the modeler has two alternatives:

specify an ordering, (perhaps deterministically or probabilistically), or leave the order

unspecified. If the order is unspecified, it is assumed that the order does not matter,

or that the events can happen concurrently (simultaneously). It is important to be

able to express concurrency, but the ability to express concurrency may also lead to the

specification of ambiguous models. There are a number of checks to determine whether

models are or may be ambiguous (usually implying an incorrectly specified model) with

different thresholds of ambiguity. We give a survey of a number of techniques, describing

their relative usefulness and characteristics, and then provide the theoretical foundation

for an efficient implementation of a particularly useful check called the well-specified

check.
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1 Introduction

One of the important results of Einstein’s theory of relativity is that simultaneity is relative to

the observer. Two events may occur simultaneously with respect to one observer, but occur in

some order according to another observer, and a different order according to a third observer.

Thus, a fundamental aspect of nature is that simultaneity and arbitrary order is relative to

the observer. In the study of discrete event systems, computer and communication systems in

particular and especially distributed systems, the same principle applies.

Engineers who build complex systems want to have an understanding of the systems, in-

cluding how fast and how dependable the system will perform its function. To achieve this,

people build system models, which are some mathematical representation of an abstraction

of the system’s behavior. Models can be expressed in precise languages, called formalisms.

Examples of formalisms include a family of queueing network formalisms (used for perfor-

mance models) [1, 2], stochastic Petri nets (used for performance and dependability analysis)

[3, 4], stochastic process algebras (also for performance and dependability analysis) (e.g., [5]),

and fault trees (for dependability analysis) [6]. Different formalisms have different strengths,

and often allow the modeler to reason formally about the model, and hence the system. For

example, we may be able to formally reason that a model in some formalism never enters a

deadlocked state, and therefore if the model accurately reflects the behavior of the system, the

system is deadlock free.

One of the weaknesses of using formalisms is that they can be tedious to represent complex

behavior. (An extreme example of this might be to try to write a word processor using a Turing

machine.) For sophisticated and detailed models, engineers rely on simulation languages.

While these often compromise the formal nature of formalisms, they offer in return compact

representations of complex behavior. The class of simulation languages has been formally

characterized using a formalism called generalized semi-Markov process, or GSMP [7, 8].

The particular aspect of simultaneity, sometimes called concurrency of discrete events, that

we are referring to is that of two or more discrete events that occur at the same time. Here,

an event can be thought of as a change in system state at a discrete point in time. One

often neglected aspect of modeling is the ability to express this form of concurrency, that is,
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models should to be able to express two events that may happen at the same time, or due to

relativity, events in which the ordering is arbitrary. This is frequently simply not allowed in

many modeling formalisms because allowing that may lead to some difficult problems (that

we shall address). Leaving the order of concurrent discrete events unspecified may or may not

lead to ambiguous behavior. Concurrency may lead to ambiguity, or it may not, and checking

whether this is the case can be a difficult problem. Historically, this problem has largely been

ignored and formalisms simply do not allow this form of concurrency.

For a simple example, if lightning strikes an aircraft, then certain electronic components may

fail, leading to a failure of a non-critical system. The time between when the lightning strikes

and components fail may depend exactly where the lightning strikes, but could theoretically

be measured, but for reliability assessment, the time could be safely approximated as zero.

The precise order in which the components fail may be irrelevant if the results are the same.

In another example, two software threads may modify a common variable. The time it takes

to add one to a variable is negligible compared to other delays, and the logical steps can be

broken down to 1) read from the memory location, 2) add one to the value, and 3) write to the

memory location. If one thread adds 1 to the variable, and concurrently, another thread sets

the value to zero, then the result is ambiguous behavior. The precise order in which each step

occurs does matter. This is a trivial example where being able to express concurrent events

and analyze whether the resulting behavior is ambiguous would be quite useful. As models

become more complex, this ability becomes more important.

In general, there have been three ways to describe how instantaneous events could be

ordered: deterministically, probabilistically, or non-deterministically. It’s interesting to note

that very few formalisms, such as GSPNs and extensions, allow the expression of all three of

these ways. Even GSMPs, for example, have been carefully crafted to only allow deterministic

or probabilistic ordering. One of our contributions here is to modify GSMPs to allow for

non-deterministic orderings in a way that can be useful for modelers.

Ambiguity is easy to detect in a model, but whether the ambiguity leads to ambiguous

behavior in some measurable way is in general computationally expensive to detect, so we

restrict ourselves primarily to ambiguity that might arise from two simultaneous discrete events.

This can occur because two processes start at exactly the same time (e.g., they become enabled
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from the same event) and take identical time to complete. When the process completes, the

state of the model is altered to reflect the completion of the process. Another source of

simultaneous events is in processes take zero time to complete. Zero-timed processes can be an

approximation to processes that take very little time relative to other events in the model, or

they can be one part of a succession of zero-timed processes that reflects how a model changes

after a timed process completes, such as steps in an algorithm used to compute the next state.

In this paper, we begin by reviewing previous work in this area. Previous work has of-

ten focused on simultaneous events within a particular formalism, and comparing different

approaches has been hindered because of the differences in formalisms. To alleviate this, we

develop two formalisms in which we believe we can capture the relevant aspects of all the

approaches we review. This gives us a common reference to which we can compare different

approaches. It also allows us to reason formally using a common notation. We focus primarily

on two approaches which we believe to be the most useful and efficient. One important result

that we show here, rigorously, is that both approaches are computationally efficient.
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2 Background

As we mentioned in the introduction, there are a number of formalisms that are used for

performance and dependability evaluation. We will focus on a small set of these, namely

stochastic process algebras (SPAs) and various extensions to stochastic Petri nets (SPNs).

Both of these classes of formalisms allow for concurrent behavior, and thus, the possibility

of concurrent events. Analysis of SPAs and SPNs often involve converting the model into

a continuous or discrete time Markov chain and performing some numerical analysis on the

Markov chain. Thus, delays in these formalisms are exponentially distributed, but they also

may be immediate, i.e., take zero time. Multiple processes that take zero time to complete may

be initiated by a single event, so the events corresponding to the completion of the immediate

processes are concurrent. This is one of the sources of concurrent events in SPAs and SPNs.

Some extensions of SPAs and SPNs allow non-exponential delays such as deterministic

times, or discrete distributions such as a geometric. Again, if two processes are started by

a single event, then there is some probability that two or more processes may complete at

the same time, and the corresponding events are simultaneous. In general, non-exponential

delays do not translate into Markov chains (or rather, Markov chains with a countable state

space), and they are generally classified under the much more general GSMP formalism. In

later sections, we will examine GSMPs in greater detail.

What makes this work unique is that the models contain both timed and untimed (or more

specifically, zero-timed) behavior. Among the SPA community, there have been considerable

analysis of untimed probabilistic and non-deterministic systems with concurrent events (e.g.,

[11]). Only recently have SPA formalisms considered a mix of time, untimed probabilistic, and

untimed non-deterministic behavior. MoDeST [12] is an example of a recent formalism that

can express this type of behavior.

Stochastic Petri nets [4] were originally developed as a simple timed extension to Petri nets.

It became apparent rather quickly that adding timed and immediate behavior was useful, and

generalized stochastic Petri nets (GSPNs) were formed [3]. The state-changing process of a

SPN is called a transition (graphically depicted as vertical bars). Transitions may fire (change

model state) if they are enabled (according to some condition), and the delay between when
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a transition becomes enabled and fire can be exponentially distributed or immediate. The

transition is labeled timed or immediate accordingly.

Originally, probability distribution over competing immediate transitions were assigned by

the user during a state space exploration, and hence concurrency was always probabilistically

resolved. This was a tedious process, so GSPNs were subsequently revised. The revision allowed

for an automatic partitioning of immediate transitions into extended conflict sets (ECSs) [3].

Because of the structure of a GSPN, a model could be analyzed so that competition among

immediate transitions that belonged to different ECSs were “guaranteed” not to cause any

ambiguities. Probabilistic resolution of concurrency was only required for resolving immediate

transitions in the same ECS. This was later made even more formal in [13]. The primary

advantage of using ECSs are stated as: “to allow a simple specification of random switches

[immediate transitions], independently of the knowledge of the reachable markings” [13]. Thus,

ECSs can be formed by a static analysis of the model.

There are a number of drawbacks with ECSs. First, the analysis of the GSPN to form ECSs

is uses a sufficient, but not necessary condition. This is a relatively minor drawback, but it will

sometimes lead to ECSs that are unnecessary. Most significantly, the construction of ECSs are

closely tied to the structure of GSPNs. Different extensions that relax the structure such as

stochastic reward nets [14, 15] and stochastic activity networks [16], can not use ECSs. Finally,

recently a flaw has been found in the construction of ECSs that may still lead to ambiguity

[17]. Reliance on ECSs to detect possible ambiguity is indeed not sufficient, and it is likely

that a new revision of GSPNs will be necessary to fix this flaw. The fact that it has taken

years to identify this flaw is an indication of how tricky this problem is, and how important it

is to use rigorous methods. ([13] outlines a proof that is clearly incorrect.)

Concurrent to the development of GSPNs, stochastic activity networks (SANs) [16, 18] were

developed. SANs also have timed activities, which are similar to timed GSPN transitions, and

instantaneous activities, which are analogous to immediate GSPN transitions. Each SAN

activity can have cases, which probabilistically describes different possible behaviors upon

completion of the process. Among multiple immediate activities that can fire, the order in

which they fire is left unspecified, and so long as the timed or measurable behavior of the

model does not change, the model is said to be well-specified. (We define this more precisely
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and formally in following sections.) While the definition of well-specified was given as early as

1988 [19], an algorithm to perform the check was not published until 1995 [20]. Under modest

assumptions, a more efficient algorithm is also possible ([21], refined in later sections of this

paper). In this paper, we make several new contributions related to well-specified, including

the existence of an efficient algorithm that works without any assumptions.

Another approach has been through the use of the concept of well-defined [22]. Well-defined

itself is a very strict condition and does not allow the expression of concurrent events. However,

also defined in [22] is well-defined with respect to a reward structure, which does allow ambiguity

so long as it is not measured by the reward structure. (This will be described formally and in

greater detail in following sections.) The authors propose an algorithm to check for a sufficient

condition for a model to be well-defined with respect to a reward condition. This check, it

turns out, is quite similar to the well-specified check. In fact, under modest assumptions, they

are identical. We prove this in Section 3.4.

The advantage of using the well-specified and well-defined checks have is that they can be

applied efficiently. They can be applied as a model is executed, either by simulation, or by a

state-space analysis. The disadvantage is that, unlike the (flawed) ECS approach, is that it

cannot be applied structurally.

GSMPs have historically not considered ambiguity at all. The order of concurrent discrete

events must either be deterministically or probabilistically specified; ambiguity of order, a

natural result of simultaneity, is not allowed. Perhaps this is due to the historical need for

efficient computer simulation. However, we show that this ambiguity can be allowed and

checked with little overhead.

In the following section, we begin to present the concepts in a formal way. Because well-

specified and well-defined were developed in different contexts with slightly different subtle

differences, we define a representation that both concepts can be applied to equally well. We

begin by describing that representation and various terminology that will help in presenting the

definitions and implications. The formality is necessary to truly understand the distinctions

between well-specified and well-defined, and be confident that the various algorithms we present

are correct.
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3 Terminology

The variety of formalisms and subtle variants and differences makes it difficult to chose a par-

ticular formalism to apply these checks in a uniform way. For example, the term well-specified

has been applied specifically to SANs [16], while well-defined has been applied to GSPNs [3].

Directly comparing the two, formally, can be difficult. Furthermore, to our knowledge, no

equivalent definition has been applied to GSMPs.

Our solution is two-fold. First, for GSPNs, SANs, and related formalisms such as SPAs, we

develop a new formalism, which we call the intermediate formalism representation (IFR). For

our purposes, IFR generalizes, and hence abstracts away unimportant aspects of the execution

behavior of a formalism, while retaining other aspects of the execution behavior that is essential

to our analysis. Thus, we can be rigorous and uniform in our application of the definitions and

proofs.

Furthermore, we believe that using IFR is not a limitation. We argue (without proof, al-

though one would be straightforward) that any GSPN or SAN model has a straightforward

mapping into an equivalent IFR model. Furthermore, the definitions and proofs can be ex-

trapolated in a straightforward manner to the other formalisms, some of which we will name

later. This gives a nice mix of rigor and generalization.

We take a different approach with GSMPs. Since they are significantly different from SPNs

and extensions, and considerably more sophisticated, we treat them separately. We take a

similar tact in creating a simplified GSMP formalism that (we believe) retains all the essential

elements of GSMPs, but is syntactically more similar to IFR. Again, this allows us a similar

mix of a simpler formalism for easier rigorous application of definitions and proofs, as well as

generalization.

3.1 Intermediate Formalism Representation

Definition 1. An Intermediate Formalism Representation (IFR) is a tuple: IFR = (Σ,T,En, φ,W,PG, µ0).

• Σ, a countable set of markings;

• T = TT ∪ TI , set of timed and immediate transitions;
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• En : Σ× T, the enabled relation;

• φ : Σ× T→ Σ, the transition firing partial function;

• W : Σ× T→ R
>, the weight/rate partial function;

• PG : Σ→ 22TI , the transition partition function;

• µ0, the initial marking.

A transition tinT is said to be enabled in marking µ ∈ Σ if (µ, t) ∈ En. The fire function

φ(µ, t) is defined only for transitions t that are enabled in marking µ. Similarly, W(µ, t) is

defined only transitions t that enabled in marking µ. The transition partition function partitions

the immediate transitions in each marking. I.e., if PG(µ) = {g1, g2, . . . , gk} where gi ⊆ TI ,

then ∪igi = TI , and ∩igi = ∅.

We claim that the IFR can accept any SPN or related formalism, so it is sufficient to prove

properties on IFR. It is then straightforward to apply the results to a specific formalism.

The IFR formalism specifies a probabilistic automata, and the general idea behind the exe-

cution of the IFR is as follows (this will be given more formally below). Transitions are either

immediate or timed. When a timed transition is enabled, then after some exponential time

(given with rate W), the transition will “fire” and the model will change marking according

to the firing function φ. If an immediate transition becomes enabled, then it will fire imme-

diately, i.e., in zero time. If multiple immediate transitions become enabled simultaneously,

then immediate transitions are selected probabilistically among transitions of the same par-

tition group. Among immediate transitions of different partition groups, the selection is left

undefined.

The key construct to allow non-determinism is the immediate partition group PG. The

concept behind this is that immediate transitions of the same partition group compete prob-

abilistically using the weight function. Among immediate transitions of different partition

groups, the order is left completely unspecified. This combination of ordering within groups

and non-ordering among partitions allows us to express any combination of deterministic or-

dering (through enabling), probabilistic ordering (through weights), and non-deterministic

ordering (among partition groups).
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Before we can proceed, we must introduce some notation for convenience. Let EN µ = {t ∈

T : (µ, t) ∈ En} be the set of enabled transitions. Similarly, let EN I
µ = EN µ ∩ Ti and EN T

µ =

EN µ∩TT be the set of enabled immediate and timed transitions, respectively. Furthermore, we

can define EN ∗µ = EN I
µ if EN I

µ 6= ∅, or EN T
µ otherwise. The symbol EN ∗µ = EN I

µ gives us the

set of enabled transitions in a marking that are competing to fire first; immediate transitions

will always fire before timed transitions.

Assume first that a IFR model contains no non-specified simultaneous discrete events.

This occurs when ∀µ ∈ Σ, ∃g ∈ PG(µ) such that g ∩ EN I
µ = EN I

µ, i.e., all enabled immediate

transitions belong to the same immediate partition group. Then a model M uniquely defines

a stochastic process SP. Let SP : Ω× N→ T×Θ× Σ be the stochastic process a IFR model

M . A sample path of the SP, SP|ω, defines a sequence of events. We simplify by letting

E : T×Θ×Σ be an event. Then we can write SP : Ω×N→ E. For εi ∈ E, εi = (ti, θi, µi), ti

is the transition (immediate or timed) that fires, θi is the transition firing time, and µi is the

resulting marking. We write SP|n, for n ∈ N, to be the n-th event of the stochastic process.

To add concurrency, we can use the original definition of IFR and simply relax the condition

that enabled immediate transitions belong to the same partition group. Then the order in which

immediate transitions complete is left unspecified, and the assumed intention is that the order

is arbitrary in some sense. Next, we describe the execution policy for IFR models.

First, notice that a IFR model M 67→ SP, but rather, a model can specify a number of

possible mappings. In order to describe these possible mappings, we use a scheduler. A

scheduler s is a mapping s : Σ → 22T
where s(µ) ∈ PG(µ), and indicates which partition

group is selected in a marking µ so that transitions of that partition group will fire before

transitions of other partition groups. Thus, a IFR model M and a scheduler s does define

a stochastic process. Let SM be the set of valid schedulers for a model M . We denote the

particular stochastic process defined by M and s as SPs, and we denote the family of stochastic

processes possibly defined by the model as SPSM = {SPs : (M, s) 7→ SPs, s ∈ SM}. We can

then ask the question: do all SPs ∈ SPSM define an “equivalent” stochastic process in some

sense? If this is the case, then the orderings are safely arbitrary; otherwise, the orderings lead

to ambiguity.

The execution policy formally defines how the model evolves, and hence describes the
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EP(µi, θi, s) 7→ (ti+1, θi+1, µi+1)

Begin

Let T∗ =

s(µi) ∩ EN I
µi

EN I
µi
6= ∅ ,

EN T
µi
, otherwise .

Let ti+1 ∈ T∗ be selected with probability W(µi,ti+1)∑
tj∈T∗

W(µi,tj)

θi+1 =

θi EN I
µi
6= ∅ ,

θi + Xi ∼ exp(W(µi, ti+1)) otherwise .

µi+1 = φ(µi, tm)

End

Figure 1: Execution policy for IFR.

stochastic process. The execution policy describes how, given the model enters some marking

µi at time θi, the subsequent marking µi+1 is reached by firing transition ti+1 at time θi+1.

The execution policy is given in Figure 1. Note the use of the notation θi+1 = θi + X ∼

exp(W(µi, ti+1)); this means that θi+1 is the previous firing time θi plus some exponential

random variable (Xi) with parameter W(µi, ti+1). I.e., let λ = W(µi, ti+1). Then FXi
(t) =

1 − e−λt. The random variables ∪i{Xi} are independent. Note that the stochastic process is

time-homogeneous.

The execution policy formally describes the stochastic process SPs : Ω×N→ E. From this,

we can induce a Borel space and a unique probability measure P . It is possible to state precisely

what the Borel space and measure function is precisely, but such formality is unnecessary for

our purposes here. Let Pr[e|s] ≡ P{ω ∈ Ω : SPs|ω satisfies e}. For example, Pr[µi → µj|s]

is shorthand for writing P{µj ∈ EP(µi, θ, s) (it is independent of θ). Furthermore, let Pr[e]

be undefined if Pr[e|s] is not identical for all s ∈ SM . Thus, Pr[µi → µj] is undefined if

Pr[µi → µj|s1] 6= Pr[µi → µj|s2] for some s1, s2 ∈ SM . If Pr[µi → µj|s] is identical for all

s ∈ SM , then Pr[µi → µj] ≡ Pr[µi → µj|s] for any s ∈ SM . Also, note that Pr[µ1 → µ2, µ2 →

µ3, · · · , µi → µi+1] = Pr[µ1 → µ2, µ2 → µ3, · · · , µi−1 → µi] Pr[µi → µi+1].

The concept of a defined or undefined probability, e.g., Pr[µi → µj], already gives us
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some formal way of measuring ambiguity. For example, we may require that a model have

no undefined probabilities of the form Pr[µi → µj]. Another requirement might be that

probabilities may be undefined so long as the states involved in the undefined probabilities are

somehow equivalent or indistinguishable. A third might be that the probability of a model

being in a state at some time must be defined, but the intermediate states the model is in for

zero time may be undefined.

A fourth requirement might allow undefined probabilities so long that some measure of

interest is defined. Let R : SP → R be a measure of the stochastic process. Typically,

measures are constructed using a reward structure with other timing-related information. Thus,

a requirement may be that for a measure R, R(SPs) must be identical for all s ∈ SM . This is

the condition well-defined with respect to measure M [22].

Another requirement focuses only on component of a measure, impulse rewards. An impulse

reward is a function, ı : Σ × T × Σ → R, which accumulates reward at each transition firing.

Given the model is in marking µi, transition t fires, and the resulting marking is µi+1, the

impulse reward is given as ı(µi, t, µi+1). The measure of ambiguity states that the timed

behavior of the stochastic process must be defined, and the untimed behavior can be ambiguous

so long as the probability of obtaining an impulse reward is defined. This is the well-specified

condition [19].

Each measure of ambiguity leads to a different check, and hence different algorithms for

performing the check. Some of these checks are significantly more computationally costly

than others. The remainder of this paper, we define the well-specified and a well-defined check

formally, analyzing them, and applying them to IFR and GSMP models. Unfortunately, before

we can proceed, we must define some notation.

3.2 Notation

Definition 2. We can define a pair of goes to (→) relations. Let →: Σ × Σ be defined such

that (µi, µi+1) ∈→ if ∃t ∈ EN ∗µi such that µj = φ(µi, t), and we write µi → µj. Let
s→: Σ× Σ

be defined such that (µi, µi+1) ∈ s→ if ∃t ∈ EN ∗µ+i ∩ (TT ∪ s(µj)) such that µi+1 = φ(µi, t), and

we write µi
s→ µi+1.
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Definition 3. We can define the set of successor markings of µi, and we write SM(µi), as

follows: SM(µi) = {µj : µi → µj}.

Definition 4. A marking µi is called a stable marking if EN I
µi

= ∅, i.e., if no immediate

transitions are enabled in marking µi. We write µ̂i to mean that marking µi is a stable marking.

We denote Σ̂ ⊂ Σ to be the subset of all markings that are stable markings.

Definition 5. A marking µi is called an unstable marking if EN I
µi
6= ∅, i.e., at least one

immediate transition is enabled in marking µi. We write µ̄i to mean that marking µi is an

unstable marking. We denote Σ̄ ⊂ Σ to be the subset of all markings that are unstable markings.

Definition 6. An unstable marking µ̄i is called an unscheduled marking if |{g ∈ PG(µ̄i) :

g ∩ EN I
µi
6= ∅}| > 1, that is, if in marking µ̄i multiple immediate transitions belonging to

different partitions are enabled. A marking is scheduled marking if it is not an unscheduled

marking.

Definition 7. Let  : Σ × Σ × SM be a relation, written µi  µj|s. The relation µi  µj|s

holds if there exists a sequence of markings µi, µi+1, · · · , µj−1, µj, such that µi
s→ µi+1, µi+1

s→

µi+2, · · · , µj−1
s→ µj, and µi+1, · · · , µj−1 ∈ Σ̄. We write µi  µj if µi  µj|s, ∀s ∈ SM .

Informally, if µi is an unstable marking, then µi leads to µj only if µj is reachable by firing

only enabled immediate transitions. If µi is a stable marking, then µi leads to µj only if µj

is reachable from marking µi by firing at most one enabled timed transition followed by any

number of enabled immediate transitions.

For convenience, we write µi  µj as short for µi  µj|SM ; we write µi  µj|s as short

for µi  µj|{s}; and we write µi  µj|s(µk) = g as short for µi  µj|{s ∈ SM : s(µk) = g}.

Definition 8. Let the set of next stable marking of a marking µi, written NM : Σ → Σ, be

defined as NM(µi) = {µ̂ ∈ Σ̂ : µi  µ̂}.

Definition 9. For some marking µ0, the set of immediately reachable states is given by

Σ̄µ0 = {µ ∈ Σ̂ : µ0  µ}.
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3.3 Well-Defined and Well-Specified

3.3.1 Well-Defined

We now have enough notation that we can give formal definitions for different criteria for

ambiguity for concurrent events in IFR models. We begin with the well-defined condition,

which we will call the first well-defined condition, given in [22], adapted to apply to IFR

models.

Definition 10. Let M be a IFR model, and let ε0, . . . , εk be a sequence of events generated by

M , where εi = (ti, θi, µi). A model M is well-defined if ∀n ∈ N, ∀t ∈ T , ∀µ ∈ Σ, and ∀θ ∈ R≥,

P{ti = t, θi ≤ θ, µi = µ} is defined.

Note that this definition is quite restrictive. It implies that the stochastic process should

not have any measurable ambiguity. If you consider the stochastic process as an indexed set

of random variables, then for each n ∈ N, {SPs|n : s ∈ SM} yields a set of random variables

that must be identical in distribution.

This condition does not leave any room for any ambiguity. Thus, if |SPSM | > 1, then

the model is not well-specified. If somehow for SP1, SP2 ∈ SPSM , SP1 and SP2 are identical

except that in some marking µ, scheduler 1 defines a model where an immediate transition is

not enabled, and scheduler 2 defines a model where the immediate transition is enabled but

with weight zero, then the model would still be well-defined. However, because of the way IFR

models are constructed, this scenario is not possible, and therefore for IFR models, well-defined

implies that |SPSM | = 1.

3.3.2 Well-Defined With Respect To a Reward Variable

It might be the case that there could be some ambiguity in the stochastic process, but the

ambiguity is so slight that it does not have any impact on the measure of interest. For example,

ambiguity may lead to a repair being performed by an unspecified repairperson, but as long as

the repair process is statistically identical among repairpeople and the model is not intended

to measure repairs of a particular repairperson, then the ambiguity is acceptable. This is what

a second definition of well-defined addresses (again, adapted to IFR models).
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Definition 11. Let M be a IFR model, and let ε0, . . . , εk be a sequence of events generated

by M . Let SM be the set of possible schedulers for M , and let SPSM be the set of stochastic

processes defined by (M, s). Let R be some measure of the stochastic process. M is well-defined

with respect to the reward variable R if for the set of stochastic processes defined by M , SPSM ,

Pr[R(SPs) < x] is identical for all s ∈ SM , and for all x ∈ R.

This has an interpretation that, given a reward variable R, any ambiguity that occurs does

not affect R in any measurable way. Recall that the reward variable R : (Ω×N→ E)→ (Ω→

R) maps a stochastic process to a random variable. Let Xs be the random variable defined by

R for the stochastic process SPs. Then {Xs : s ∈ SM} defines a set of random variables, and

for the model to be well-defined with respect to a reward condition R, then the set of random

variables {Xs} must be identical in distribution.

The well-defined with respect to a reward variable is perhaps the “loosest” definition in

allowing ambiguity, and hence the most general. More ambiguity would render the model

ambiguous so that the measure of interest is ambiguous. Note that this still has considerable

utility, but this is outside the scope of this problem. Our problem focuses on whether the

model is sufficiently specified so that we can learn unambiguous information about the model.

Well-defined with respect to a reward variable allows for significant amounts of ambiguity.

For example, if t1 and t2 are immediate transitions enabled in the same marking and belonging

to different partition groups, firing t1 or t2 resulted in the same next marking, and the reward

variable does not measure the firing of t1 or t2, then the ambiguity is allowed under this

condition. Even if t1 or t2 yield different next states, as long as the next states are somehow

equivalent with respect to the reward variable, for example, if the two next states are bisimilar,

then the ambiguity is allowed under this condition. However, this condition is significantly more

general than the bisimilarity condition.

3.3.3 Sufficient Well-Defined Checks

The problem with the definition of well-defined with respect to a reward condition is that a

check for this would, in general, require computing a solution the reward variable |SM | times,

potentially very costly since |SM | could grow exponentially in |Σ|. Since truly exact solutions

are often computationally impractical or impossible, approximate solutions would yield small
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differences in the reward variable solution, it is impractical to determine whether small changes

are due to the approximations or ambiguities. Thus, the well-defined with respect to a reward

variable condition is impractical to implement.

The authors of [22] take a pragmatic approach and decide instead to provide an algorithm

that is a sufficient, stricter definition of well-defined with respect to a reward condition. Instead

of calling this algorithm a sufficient condition to determine well-defined with respect to a reward

variable, from here on out, we lazily call it well-defined-2, or the second well-defined condition.

The definition is given formally below.

Definition 12. A model M is well-defined-2 if ∀µi ∈ Σ, ∀µ̂ ∈ NM(µi), and ∀ı ∈ Im,

1. Pr[µi  µ̂] is defined, and

2. Pr[µi  µ̂, ı] is defined.

This definition assumes that the only ambiguity that can occur in a model is which imme-

diate transitions will be selected to fire. Indeed, IFR is constructed in such a way that this is

the only form of ambiguity possible. There is no ambiguity about what the distribution of the

firing time is, for example, as is the case for other formalisms ([12], for example).

Informally, this definition checks whether, from any marking in the marking space, the

probability of reaching the next stable marking and obtaining some impulse reward is defined.

Recall that SPs : Ω × N → E, so that SPs|n is a random variable. For some ε ∈ E and

s1, s2 ∈ SM , it might be the case that Pr[SPs1 |n = ε] 6= Pr[SPs2|n = ε], or at least this is not

explicitly dis-allowed. I.e., the exact nature of the sequence of events may not be identical in

probability, but that is acceptable so long as the the definition is met.

There is a very limited amount of ambiguity that is tolerated under this condition. Let

t1 and t2 be enabled immediate transitions of different partition groups in some marking µ.

If the probability of selecting t1 and t2 from their respective partition groups is identical,

φ(µ, t1) = φ(µ, t2), (the result of firing t1 and t2 is the same), and if the reward variable does

not measure t1 or t2 firing, then the ambiguity with regard to whether t1 or t2 fires is acceptable

under this condition.

This definition of well-defined-2 is stricter than the definition of well-defined with respect to

a reward condition, and can be best illustrated through a simple example. For some marking
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µi, say that there are two possible next stable states: µ̂ and µ̂′, and the probability of reaching

µ̂ and µ̂′ are undefined. Further, let us say that the reward variable does not distinguish

between µ̂ and µ̂′, and that the future behavior of the model, given the model is in states µ̂ or

µ̂′, is identical. This is the case if µ̂ and µ̂′ are bisimilar, for example. In this case, the model

meets the requirement of well-defined with respect to a reward condition, but does not meet

the condition of well-defined-2. Hence, some generality is lost for efficiency in performing the

check.

Since the second well-defined condition allows for such a restrictive form of ambiguity, an

efficient algorithm can be devised to perform this check [22].

3.3.4 Well-Specified

Another approach developed separately, which has been used exclusively on SANs, is the “well-

specified” condition. First introduced in [19], it takes a slightly different approach. Formally,

the definition is given below (again, adapted to IFR models).

Definition 13. A model M is well-specified if ∀µ̂0 ∈ Σ̂, ∀µ̂ ∈ NM(µ̂0), and ∀ı ∈ Im,

1. Pr[µ̂0  µ̂] is defined, and

2. Pr[µ̂0  µ̂, ı] is defined.

Informally, this definition is concerned about the timed evolution of the model. Inductively,

if moving from a stable state to some next stable state and obtaining an impulse reward is

always defined, then the model is well-specified. This is a more general definition than well-

defined, and the distinction is subtle but important. For a model to be well-specified, the

probability of reaching a next stable marking and obtaining an impulse reward from a stable

marking must be defined. To be well-defined, the probability of reaching a next stable marking

and obtaining an impulse reward from any marking must be defined.

Presumably, a model that meets the well-specified definition might have some unstable

marking by which the probability of reaching some next stable marking and obtaining an

impulse reward would be undefined. This is acceptable for well-specified models, but not for

well-defined models. Consequently, the algorithm that was developed to determine whether a
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SAN is well-specified [9, 20] was developed from the definition to enumerate all the possible

paths from a stable state to the next stable state. Unfortunately, the number of paths can

be exponential in the number of states involved in the set of possible paths. This yields an

algorithm that is exponential in |Σµ0|. This is in contrast with the well-defined condition in

which an algorithm exists that can perform the check that is linear in |Σµ0|.

An interesting result of our research is that, surprisingly (or perhaps not), the two definitions

are in fact very similar. Because well-specified was defined in terms of SANs and the execution

policy of SANs, while well-defined was defined in terms of GSPNs and the execution policy

governing GSPNs, it was not at all clear to researchers at the time that they were so similar.

In fact, under a mild condition, the two definitions are equivalent. This condition is simply

this: Pr[µi → µj] > 0 for all µi ∈ Σ, and for all µj ∈ SM(µi). In the high-level IFR model, this

requirement is met if all weights are positive. I.e, there may be no transition t and marking µ

such that W(µ, t) = 0. An intuitive interpretation of this might be that a transition with zero

weight (and hence zero probability of firing) should be considered as not enabled.

If there exists an immediate transition with zero weight, and hence zero probability of

firing, then there exists a sample path of the stochastic process in which that transition fires,

but the probability of those sample paths in which that transition fires is zero. This is key

to intuitively understanding the subtle difference between the definition of well-specified and

well-defined. For illustration, suppose Pr[µi → µj] = 0, and Pr[µj  µ̂] is undefined for some

µ̂ ∈ NM(µj). Then the model may be well-specified, but is not well-defined. The distinction is

this: if µj is reachable with probability zero, so anything that happens from µj is considered

irrelevant from the perspective of well-specified. However, since µj ∈ Σ, the model is not

considered well-defined.

It is not clear that one definition is better than another. The arguments about well-specified

and well-defined is that if the corresponding level of ambiguity is present, then the model is not

correct. Proponents of well-specified would say that ambiguity that happens with probability

zero is acceptable, while well-defined proponents would argue that any ambiguity in the model

is a sign that the model was constructed incorrectly. Both are valid from a perspective.

If, however, we ignore sample paths with probability zero, or correspondingly, we say that

immediate transitions with zero weight are considered not enabled, then the two definitions are
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in fact equivalent. In the following section we prove this formally, and is one of the contributions

of this paper. Later, we present a new algorithm that accurately performs the well-specified

check in linear time, also (accurately) presented here for the first time. Finally, we apply these

definitions to GSMP models.

3.4 Equivalence of Well-Specified and Well-Defined

As we just mentioned, under a mild condition, the definition of well-specified and well-defined

are identical.

We begin by stating three rules that are readily evident.

Rule 1. If µi is a scheduled marking, then Pr[µi  µ̂] =
∑

µj∈SM(µi)
Pr[µj  µ̂]pij

Rule 2. Pr[µ̂ µ̂] = 1.

Rule 3. Pr[µi  µ̂ ∩ µi  µ̂′] = 0, for µ̂, µ̂′ ∈ NM(µi), µ̂ 6= µ̂′.

Note that we use the shorthand notation pij to mean Pr[µi → µj].

Condition 1. If a node µi is an unscheduled node, then Pr[µi  µ̂|s(µi) = g] is defined and

identical ∀g ∈ PG(µi), ∀µ̂ ∈ NM(µi).

This leads to the first theorem.

Theorem 1. If µi → µj implies that Pr[µi → µj] > 0, then Condition 1 is a necessary and

sufficient condition for a IFR model to be well-specified with respect to the first part of the

well-specified condition.

Proof. If Condition 1 holds, then Pr[µi  µ̂] is defined ∀µi ∈ Σ, so certainly it is defined for

µi ∈ Σ̂. Thus, Condition 1 is a sufficient condition.

To show that Condition 1 is a necessary condition, we assume, for contradiction, that a

well-specified IFR model exists that does not meet Condition 1.

First, we note that the well-specified definition implies that Pr[µ̂i  µ̂j] is defined ∀µ̂j ∈

NM(µ̂i). Condition 1 implies that Pr[µi  µ̂j] is defined ∀µ̂j ∈ NM(µi). For a contradiction,

we can assume that there exists some markings µ̂0, µ̄, and µ̂ where:
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1. |µ̂0  µ̂| > 0,

2. |µ̂0  µ̄| > 0,

3. |µ̄ µ̂| > 0,

4. Pr[µ̂0  µ̂] is defined, and

5. Pr[µ̄ µ̂] is undefined.

If Pr[µ̂0  µ̂] is defined but Pr[µ̄ µ̂] is not defined, then there must exist some marking

marking µ̄i for which |µ̂0  µ̄i| > 1 and Pr[µ̄i  µ̂] is defined, while for some µ̄j ∈ SM(µ̄i),

Pr[µ̄j  µ̂] is not defined. (If no such node µ̄i exists, then the contradictory assumption cannot

hold.)

There are two possibilities: µ̄i is sequenced or unsequenced. If µ̄i is unsequenced, then for

some g ∈ PG(µ̄i), Pr[µ̄i  µ̂|g] = Pr[µ̄j  µ̂] which is undefined. If µ̄i is unsequenced, then

the only way that Pr[µ̄i  µ̂] can be defined is if Pr[µ̄i → µ̄j] = 0, which violates the condition

of the theorem. Thus, µ̄i can not be unsequenced.

Therefore, µi must be a sequenced node, and we can write

Pr[µi  µ̂] =
∑

µ̄j∈SM(µ̄i)

Pr[µ̄j  µ̂]pij , (1)

where pij = Pr[µi → µ̄j]. Recall that for contradiction, we assume that for some µ̄j ∈ SM(µi),

Pr[µ̄j  µ̂] is undefined.

To proceed, let us refine the set of states that µ̄j could be. Let Σµ̂0 = {µ ∈ Σ : µ̂0  µ}.

Thus, Σµ̂0 gives us the subset of states on which we can focus our attention. Furthermore, let

us define a partitioning of the schedulers that are unique to the scheduling of partitions in Σµ̂0 .

Let {ςi} be a partitioning of SM such that ς = {s ∈ SM : s(µ)is identical∀µ ∈ Σµ̂0}. Thus,

∀s ∈ ςi, the model behaves identically in its evolution from µ̂0 until the next stable marking.

For convenience, we can write ς(µ) to mean s(µ) for some s ∈ ς, since the value is identical for

all s ∈ ς. In particular, we write Pr[µ̄j  µ̂|ς] for Pr[µ̄j  µ̂|s], for s ∈ ς.

Note that Pr[µ̄j  µ̂|ςi] must be different for at least two partitions of the scheduler,

because if the probability was identical for all schedulers, then the probability would be defined.

Furthermore, we can deduce that there must exist partitions of the scheduler ςa and ςb such that
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Pr[µ̄j  µ̂|ςa] 6= Pr[µ̄j  µ̂|ςb] and |{µ ∈ Σµ̂0 : ςa(µ) 6= ςb(µ)}| = 1. To see this, consider the a

finite, orthogonal, discrete space defined by |Σµ̂0| dimensions, where each µ ∈ Σµ̂0 defines an

axis (called ~µ). Note that ||~µi|| = |PG(µi)|. One can trace a path from a point in the subspace

defined by ςa to a point in an adjacent subspace defined by ςb that moves in directions parallel

an axis. At some way along the path, one point lies in ςa, and the next point along the path,

moving only in one dimension, lies outside of ςa. Let that dimensioned be labeled µd. I.e.,

ςa(µd) 6= ςb(µd), and ςa(µ) = ςb(µ), ∀µ̄ ∈ Σµ̂0 \ {µd}.

Recall that ςa and ςb were chosen so that Pr[µ̄j  µ̂|ςa] 6= Pr[µ̄j  µ̂|ςb], where Pr[µi  µ̂]

is defined, but for some µ̄j ∈ SM(µi), Pr[µj  µ̂] is undefined. We can partition the set of

paths µ̄j  µ̂|ςa into paths that pass through marking µd and those that don’t. Thus,

Pr[µ̄j  µ̂|ςa] = Pr[µ̄j  µ̂ ∩ µ̄j  µd|ςa] + Pr[µ̄j  µ̂ ∩ µ̄j 6 µd|ςa]

Also, note the identity

Pr[µ̄j  µ̂ ∩ µ̄j  µd|ςa] = Pr[µ̄j  µd ∩ µd  µ̂|ςa]

= Pr[µ̄j  µd|ςa] Pr[µd  µ̂|ςa] .

(The latter equality follows directly from the execution policy.) Since Pr[µ̄j  µ̂ ∩ µ̄j 6 

µd|ςa] = Pr[µ̄j  µ̂ ∩ µ̄j 6 µd|ςb], we can deduce that

Pr[µ̄j  µd|ςa] Pr[µd  µ̂|ςa] 6= Pr[µ̄j  µd|ςb] Pr[µd  µ̂|ςb] (2)

There are two important facts to note about (2). First,

Pr[µ̄j  µd|ςa] = Pr[µ̄j  µd|ςb] > 0 . (3)

The first equality can be easily seen because the stochastic process behaves identically under

schedulers ςa and ςb on paths from µ̄j to µd; only at µd does it behave differently. The probability

of the stochastic process evolving from µ̄j to µd is also non-zero; if Pr[µ̄j  µd|ςa] = 0, then we

can deduce that Pr[µ̄j  µ̂|ςa] = Pr[µ̄j  µ̂|ςb]. This is a contradiction of the way we picked

µd, ςa, and ςb. Secondly, given (2) and (3), we know

Pr[µd  µ̂|ςa] 6= Pr[µd  µ̂|ςb] . (4)
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This makes intuitive sense; since Pr[µ̄j  µ̂|ςa] 6= Pr[µ̄j  µ̂|ςb], and since ςa and ςb differ only

in its behavior at µd, then Pr[µd  µ̂|ςa] 6= Pr[µd  µ̂|ςb]. We will use this result later.

Going back to (1), we can write

Pr[µ̄i  µ̂] =
∑

µ̄j∈SM(µ̄i)

Pr[µ̄j  µ̂]pij ,

where some terms on the right hand side are undefined, as two separate equations:

Pr[µ̄i  µ̂] =
∑

µ̄j∈SM(µ̄i)

Pr[µ̄j  µ̂|ςa]pij , (5)

Pr[µ̄i  µ̂] =
∑

µ̄j∈SM(µ̄i)

Pr[µ̄j  µ̂|ςb]pij . (6)

Now all the probabilities are defined. Taking the difference between (5) and (6), we get

0 =
∑

µ̄j∈SM(µ̄i)

(Pr[µ̄j  µ̂|ςa]− Pr[µ̄j  µ̂|ςb])pij . (7)

Again, we can partition the set of events µ̄j  µ̂ into two disjoint sets that include and

exclude µd: µ̄j  µ̂ ∩ µ̄j  µd and µ̄j  µ̂ ∩ µ̄j 6 µd. Thus, we can write

Pr[µ̄j  µ̂|ςa] = Pr[µ̄j  µ̂ ∩ µ̄j  µd|ςa] + Pr[µ̄j  µ̂ ∩ µ̄j 6 µd|ςb] ,

Pr[µ̄j  µ̂|ςb] = Pr[µ̄j  µ̂ ∩ µ̄j  µd|ςb] + Pr[µ̄j  µ̂ ∩ µ̄j 6 µd|ςb] .

Since

Pr[µ̄j  µ̂ ∩ µ̄j 6 µd|ςa] = Pr[µ̄j  µ̂ ∩ µ̄j 6 µd|ςb] ,

we can rewrite (7) as

0 =
∑

µ̄j∈SM(µ̄i)

(Pr[µ̄j  µ̂ ∩ µ̄j  µd|ςa]− Pr[µ̄j  µ̂ ∩ µ̄j  µd|ςb])pij

Substituting as before, we get

0 =
∑

µ̄j∈SM(µ̄i)

(Pr[µ̄j  µd|ςa] Pr[µd  µ̂|ςa]− Pr[µ̄j  µd|ςb] Pr[µd  µ̂|ςb])pij

=

Pr[µd  µ̂|ςa]
∑

µ̄j∈SM(µ̄i)

Pr[µ̄j  µd|ςa]pij

−
Pr[µd  µ̂|ςb]

∑
µ̄j∈SM(µ̄i)

Pr[µ̄j  µd|ςd]pij


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Since pij > 0, and we know for all µ̄j ∈ SM(µi), the equality of (3) holds, and the for some

µ̄j ∈ SM(µi), the inequality of (3) holds, we can simply write

Pr[µd  µ̂|ςa] = Pr[µd  µ̂|ςb] .

This contradicts (4).

This proof shows that under the condition Pr[µi → µj] > 0, the first part of the well-

specified and well-defined checks are identical. A proof of nearly identical form can be used

to show that under the same condition, the second part of the well-specified and well-defined

checks are identical. Hence, under the condition, well-specified and well-defined are equivalent

on IFR models.

3.5 Well-defined algorithm

In this section, we present the well-defined algorithm adapted to IFR models. This is essentially

a recasting of the algorithm presented in [21] to apply to IFR models, and to use our notation.

For this algorithm to work, then the following assumptions must hold for all µ̂0 ∈ Σ̂:

1. |Σµ̂0| is finite.

2. The graph is acyclic.

The first requirement is a “hard” requirement for any algorithm-based approach that must

examine every state in Σµ̂0 and terminate. The second requirement is necessary for the algo-

rithm we present, but not strictly necessary for any algorithm. This could be relaxed so that

no probability-1 cycles exist, and then a more sophisticated algorithm similar to solving for the

steady-state behavior of a DTMC (see [23], for example) could be used. We chose to present

the simpler algorithm for clarity, because cycles are rare in models, and because we believe the

application is straightforward but contains issues not immediately pertinent.

For some marking µ̂0, let Im(µ̂0) = {ı : Pr[µ̂0  µ̂, ı] > 0, µ̂ ∈ NM(µ̂0)}, the set of

measurable impulse rewards obtained in a stable step from marking µ̂0. We use a vector

~P : R|Σ
µ̂0 |×|Im(µ̂0)| that is indexed by markings and impulse rewards, i.e., ~P (µ, ı) ∈ R. Vector
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addition and vector-scalar multiplication works in the normal way. However, we use a somewhat

unorthodox notation in the equation ~Pk(µi, ◦) = ~Pk(µi, ◦) + ~P ′(µj, ◦ − i)pij. This is interpret

simply as ~Pk(µi, ı) = ~Pk(µi, ı) + ~P ′(µj, ı − i)pij, ∀ı ∈ Im. Figure 2 gives the algorithm.

Essentially, it performs a depth-first search of the nodes in Σµ̂0 , and if at any time it finds

that Pr[µi  µ̂, ı|ς] is not identical for all ς, it declares the model is not well-defined. This

algorithm can be applied to all stable markings, but need only be applied to stable markings

for which some successor markings are unstable.

3.6 Well-specified algorithm

A novel result of above proof is that we can develop a linear algorithm that will definitively

perform the well-defined check with without the condition that Pr[µi → µj] > 0. Otherwise,

the algorithm does have the same require as the well-defined algorithm. Specifically, for the

algorithm to be correct, then the following assumptions must hold for all µ̂0 ∈ Σ̂:

1. |Σµ̂0| is finite.

2. The graph is acyclic.

Again, the first restriction is a “hard” restriction for any algorithm that enumerates Σµ̂0 . The

second restriction could be relaxed, so long as any cycles do not cycle with probability 1, and

a more sophisticated algorithm applied.

The well-specified algorithm uses values in R≥ ∪ {η}, where η is considered “undefined” or

“not a number.” For example, if a probability is undefined, we can represent the probability

as η. We represent addition and multiplication using operators ⊕ and �. Normal addition

and multiplication holds over the reals. Adding and subtracting η yields a η, i.e., 3 ⊕ η = η.

Multiplication by η follows the following rule.

x� y =


0 x = 0 ∨ y = 0,

xy x > 0 ∧ y > 0,

η otherwise.

The key here is that 0�η = 0, and x�η = η, for x > 0.. This captures the essential difference

between well-specified and well-defined: ambiguity (undefined probabilities) are acceptable for
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~P = well-defined-check(µi : Σ, root : bool)

if (µi ∈ Σ̂ ∩ root = false)

Let ~P = ~0

~P (µi, 0) := 1

return ~P

∀gk ∈ PG(µi)

Let ~Pk = ~0

∀t ∈ gk ∩ EN ∗µi

Let µj = φ(µi, t)

Let pij = W(µi,t)∑
tj∈gk∩ENIµi

W(µi,tj)

Let i = Im(µi, t)

Let ~P ′ = ~0

~P ′ = well-defined-check(µj, false)

~Pk(µi, ◦) = ~Pk(µi, ◦) + ~P ′(µj, ◦ − i)pij
End ∀t

End ∀gk
If |{~Pk : gk ∈ PG(µi)}| 6= 1

Failed well-defined check

Else

return ~P1

End algorithm

Figure 2: Well-defined algorithm for IFR models.
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well-defined models if the probability of ambiguity is zero.

We can extend the operator � to vectors. Vector addition ~z = ~x⊕~y is defined element-wise

as ~zi = ~xi ⊕ ~yi. Scalar multiplication is defined similarly: ~z = ~xy is defined element-wise as

~zi = ~xi � y. Normal precedence rules apply. The algorithm is given in Figure 3.

Theorem 2. The well-specified algorithm performs the well-specified check.

If one believes that ~P (µ̂, ı) correctly computes Pr[µ̂0  µ̂, ı] if it is defined, or η if it

is not defined, then the proof is straightforward. The proof that ~P (µ̂, ı) correctly computes

Pr[µ̂0  µ̂, ı] can be derived from first principles.
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well-specified-check(µi : Σ) : ~P

Declare ~P = well-specified-recurse(µi, true)

If η ∈ ~P

Failed well-specified check

Else

return ~P

well-specified-recurse(µi : Σ, root : bool) : ~P

if (µi ∈ Σ̂ ∩ root = false)

Let ~P = ~0

~P (µi, 0) := 1

return ~P

∀gk ∈ PG(µi)

Let ~Pk = ~0

∀t ∈ gk ∩ EN ∗µi

Let µj = φ(µi, t)

Let pij = W(µi,t)∑
tj∈gk∩EN∗µi

W(µi,tj)

Let i = Im(µi, t)

Let ~P ′ = well-specified-recurse(µj, false)

~Pk(µi, ◦) = ~Pk(µi, ◦)⊕ ~P ′(µj, ◦ − i)� pij
End ∀t

End ∀gk
return ~P1

Figure 3: Well-specified algorithm for IFR models.
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4 Application to GSMPs

A GSMP is a formalism used to describe a class of simulation languages. There have been a

number of attempts to formally construct a GSMP formalism, and the results are several very

closely related but slightly different constructs [8, 7].

GSMPs use different terminology, and to remain consistent, we take some liberty and

continue use SPN terminology when applied to GSMPs. For those familiar with GSMP termi-

nology, we use “transition” instead of “event,” “enabled” instead of “active,” and a “transition

fires” instead of an “event occurs.”

Formally, a GSMP (using our terminology) is a tuple:

• Σ : countable set of markings,

• T : finite set of transitions,

• En : Σ× T : enabled relation,

• p : Σ×2T×Σ→ [0, 1]: given marking σ and set of transitions T ∗ with the same minimum

completion time, p(µ, T ∗, µ′) is the probability that the resulting marking is µ′.

• r : Σ × T → [0,∞); for r(µ, t), the rate that the clock of t runs in marking µ. This is

irrelevant to our discussion so will be dropped.

• F : Σ × T × Σ × T → (R → [0, 1]); for F (µ, t, µ′, t′) gives the probability distribution

function of t′ when t fires in µ resulting in µ′.

• µ0 : Σ → [0, 1] ; an initial probability distribution over the markings. Irrelevant for our

use.

There are a number of things that are unsuitable for using this for well-specified and well-

defined. First, and most importantly, it leaves no room for any ambiguity in the model. If

multiple transitions have the same firing time, then the function p resolves any ambiguity by

simply defining the behavior of what will happen when T ∗ have the same minimum completion

time. This is convenient for resolving any ambiguity, but can be very tedious and impractical

to define, a priori, all possible conflicts. It suffers from all the drawbacks of over-specification

28



that we argued in Section 1, where we argued that ambiguity is sometimes an important and

useful behavior to capture in models. Further, synchronization on immediate transitions can

be used to construct larger models in a modular way, so the way the way ambiguity is resolved

may depend on how the model is used in context with other models, so a priori definitions are

impractical.

To extend the well-specified and well-defined definitions to GSMPs, we took the liberty of

modifying and simplifying the definition of GSMP. Our goal was to modify it in such a way that

it still retains the essential expressive nature, eliminates inessential features for our analysis,

and to introduce a mechanism for specifying ambiguity. First, we removed the function p and

replaced it with more GSPN-like constructs: φ, W, and PG. This gives us the ability to specify

ambiguous behavior. Second, we eliminated r as it is inessential to our analysis. The result is

what we call a “modified” GSMP, or MGSMP.

Definition 14. A modified GSMP, or MGSMP, is a tuple (Σ,T,En, φ, F,W,PG, µ0):

• Σ is a countable set of markings.

• T : a set of (generally timed) transitions.

• En : Σ× T ; the enabled relation.

• φ : Σ× T→ Σ ∪ ∅, the transition firing function.

• F : Σ×T→ (R→ [0, 1]); for F (µ, t) gives the probability distribution function of t when

the model is marking µ.

• W : µ× T→ R
≥, the weight function. If W(µ, t) > 0, then t is said to be enabled in µ;

otherwise it is not enabled.

• PG : Σ→ 22T
, a partitioning of the transitions into partition groups.

• µ0 ∈ Σ, the initial marking of the model.

The state of a GSPN is the marking of the GSPN, but since delays (given by F ) are not

exponential, the state of a GSMP is the marking along with the “clock” values of the GSMP.

The clock value is used to measure the residual time to firing of a transition. The state of
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a GSPN is given by σ = (µi,~ci), where ~ci is a vector of non-negative real values indexed by

transitions. Thus, ct
i is the value of the clock for transition t in state σi. The state space of a

GSMP is then Ξ = {σ}, and Ξ is in general uncountable.

One important difference between MGSMPs and GSPNs is that MGSMPs allow general

firing time distributions, which may include mixed or discrete distributions. Thus, it is possible

that multiple timed transitions are scheduled to fire simultaneously. Consequently, immediate

and timed transitions may be in competition, and partition groups must be defined over all

transitions, not just immediate transitions.

While a GSMP defines a unique stochastic process, the partition groups in MGSMPs allow

for some ambiguity and the need for a scheduler to define a stochastic process. Let a scheduler

s : Σ→ 22T
, where s(µ) ∈ PG(µ), and indicates which partition group is selected in marking µ

so that transitions of that partition group will fire before transitions of other partition groups.

For a given MGSMP model M , let SM be the set of schedulers possible in the model. A

MGSMP model M and a scheduler s ∈ SM defines a stochastic process SPs : Ω×N→ T×θ×Ξ.

We define an event of a MGSMP as εi = (ti, θi, σi), and the set of all events is given as

E : T×Θ× Ξ.

The execution policy for a MGSMP is more complex than a GSMP because of clock values.

Let us define for some state σi = (µi,~ci), let EN ∗µi = {t : t ∈ EN µi , c
t
i ∈ ~ci}, the set of enabled

transitions competing to fire next. The new execution policy is given in Figure 4.

It is possible to take the well-specified and well-defined conditions and apply them directly

to MGSMP models on states instead of markings. Validating a MGSMP model would be

difficult, however, because the state space of a MGSMP in general is uncountable. This is not

insurmountable because, in general, only sample paths of the stochastic process are generated,

and the checks can be applied on sample paths (which visit a finite number of states). However,

applying the check in this way has two deficiencies. First, it slows down the generation of

sample paths, and secondly it only validates that no disallowed ambiguities were encountered

by a sample path, not that disallowed ambiguities do not exist.

Fortunately, there is a better way to deal with the well-specified and well-defined conditions.

Since the number of transitions is finite, the number of combinations of transitions competing

in a marking is finite. The actual value of all the clock values are irrelevant; the only relevant
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EP(σi, θi, s) 7→ (ti+1, θi+1, σi+1)

Let T∗ = {t : ct ∈ min~ci}.

Let gi = s(µi)

Let ti+1 ∈ EN ∗µi+1
be selected with probability W(µi,ti+1)∑

tj∈gi∩EN∗µi
W(µi,tj)

µi+1 = φ(t, µi)

θi+1 = θi + ct
i

If t ∈ EN µi+1

ct
i+1 = X : FX(t) = F (µi+1, ti+1)

Else

ct
i+1 = 0

∀tj ∈ T \ {t}

c
tj
i+1 =



X : FX(t) = F (µi+1, tj) tj /∈ EN µi ∧ tj ∈ EN µi+1

c
tj
i − ct

i tj ∈ EN µi ∧ tj ∈ EN µi+1

0 tj /∈ EN µi ∧ tj /∈ EN µi+1

0 tj ∈ EN µi ∧ tj /∈ EN µi+1

End ∀

Figure 4: Conflict-free execution policy for MGSMP.
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factor is the set of transitions with the same minimum clock value, and the combination of

those is finite. Therefore, a well-specified or well-defined check could, in theory, be performed

on each marking and every subset of transition enabled in the marking.

Many of the definitions no longer apply to markings, but to states.

Definition 15. We can define a pair of goes to (→) relations. Let→: Ξ×Ξ be defined such that

(σi, σi+1) ∈→ if ∃ω ∈ Ω, n ∈ N, and s ∈ SM such that σi ∈ SPs(ω, n) and σi+1 ∈ SPs(ω, n+1).

Let
s→: Ξ×Ξ be defined such that (σi, σi+1) ∈ s→ if ∃ω ∈ Ω and n ∈ N such that σi ∈ SPs(ω, n)

and σi+1 ∈ SPs(ω, n+ 1). For convenience, we write σi → σi+1.

Definition 16. A state σi is called a stable state if ∀t ∈ EN µi, c
t
i > 0, i.e., if the next

transition firing happens in non-zero time. We write σ̂i to mean that the state σi is a stable

state. We denote Ξ̂ ⊆ Ξ to be the subset of all states that are stable states.

Definition 17. A leads to relation, written  : Ξ × Ξ is defined such that (σi, σj) ∈ if

∃ω ∈ Ω, n, k ∈ N, and s ∈ SM such that for εn = SP(ω, n), σi ∈ εn, σj ∈ εn+k, and if

0 = min~cn, then θn = θn+k, else θn+1 = θn+k. For convenience, we write σi  σj.

Definition 18. Let the state space of a model M with initial marking µ0 and corresponding

initial state σ0 be defined as the transitive closure of  with σ0. I.e., if →∗ is the transitive

closure of →, then Ξ = {σ : σ0 → ∗σ}. Note that in general, Ξ is uncountable.

Definition 19. A state σi is called an unstable state if ∃t ∈ EN µi such that cti = 0, i.e., the

next transition fires in zero time. We write σ̄i to mean that state σi is an unstable marking.

We denote Ξ̄ to be the subset of all states that are unstable states.

Definition 20. A state σi is called a concurrent state if for σi = (µi,~ci), |{t : cti ∈ min~ci}| > 1,

i.e., transitions competing for minimum firing time.

Concurrent states play the same role as unstable markings in GSPNs.

Definition 21. A MGSMP model M is well-defined if ∀σ̄i ∈ Ξ̄, ∀σ̂ ∈ NS(σ̄i), and ∀ı ∈ Im,

1. Pr[σ̄i  σ̂] is defined, and

2. Pr[σ̄i, σ̂, ı] is defined.
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Definition 22. A MGSMP model M is well-specified if ∀σ̂0 ∈ Ξ̂, ∀σ̂ ∈ NS(σ̃0), and ∀ı ∈ Im,

1. Pr[σ̂0  σ̂] is defined, and

2. Pr[σ̂0  σ̂, ı] is defined.

Similar to the way we defined Σµ̂0 , we can define Ξσ̂0 = {σ ∈ Ξ : σ̂0  σ}. Thus, Σµ̂0

gives us the subset of states which are reachable from µ̂0 by firing at most one timed transition

followed by any number of transitions that fire in zero time.

The well-specified and well-defined algorithms are identical except that σ is used in place

of µ. See Figures 2 and 3. However, one problem with using the algorithms as presented is

that |Ξ| is in general uncountable, even if |Σ| is finite. Thus, determining whether a MGSMP

model M is well-defined or well-specified may be undecidable. In one sense, this may be

acceptable. Whatever analysis of the MGSMP model that involves in some way “executing”

the model (e.g., generating sample paths, used in Monte Carlo simulation), the well-specified

or well-defined checker can be used. As a result, one can say that in the course of analysis, no

state was encountered in which the model behaved in a sufficiently ambiguous way.

This is also an unsatisfactory approach, especially when some states are unlikely to be

reached. It could be that the model is not well-specified or well-defined and hiding a serious

flaw, but since the state that leads to ambiguity is never reached, the flaw is never found.

Furthermore, if |Σ| is finite, surely there must exist some check that will determine whether

the model is well-specified or well-defined. Finally, even though |Σ| may be countably infinite,

often the model can be modified to make |Σ| finite and exercise all relevant behavior. For

example, an open queueing network may simply bound the number of customers in the queue.

If the model is correct for finite customers, it is unlikely that it becomes incorrect with infinite

customers.

In the next section, we explore such an approach. Unfortunately, we are not aware of an

exact means of determining well-specified or well-defined, but a reasonable sufficient condition

does exist.
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4.1 New MGSMP checks

We propose a new pair of checks that can be applied as sufficient conditions for a MGSMP

to be well-defined or well-specified. These checks we call sufficient well-defined check and

sufficient well-specified check, and a model that passes these checks are sufficient-well-defined

and sufficient-well-specified respectively.

Definition 23. Let TD be the set of transitions t such that for any markings µ ∈ Σ, F (µ, t) is

a discrete or mixed distribution function. I.e., TD is the set of all transitions that might have

a discrete or mixed distribution function.

We use TD to restrict the number of transitions that have the same completion times. In

general, TD = T. However, the by limiting TD to the smallest set of transitions that may share

the same completion time, we can make the algorithm more efficient, and eliminate conditions

that are clearly impossible.

The set of transitions TD∩EN µ̂i are the set of transitions that we can conservatively assume

may be enabled and tied for the earliest completion time in stable marking µ̂. Let µ̂ ∈ NM(µ̂i),

and let µ̂i  µ̂|TD∩EN µ̂i be the set of event sequences that, given the model is in marking µ̂i,

the model evolves from µ̂i to next stable marking µ̂, assuming that any transition in TD∩EN µ̂i

could fire first. Let T′ ⊂ TD ∩ EN µ̂i , and thus µ̂i  µ̂|T′ ⊆ µ̂i  µ̂|TD ∩ EN µ̂i . If we know

that Pr[µ̂i  µ̂|TD ∩ EN µ̂i ], then certainly Pr[µ̂i  µ̂|T′] will be defined.

The essential strategy behind the well-specified check is to simply determine whether

Pr[µ̂i  µ̂|TD ∩ EN µ̂i ] is defined. Note that this is a sufficient condition, but not neces-

sary. There could be some transition t ∈ TD ∩ EN µ̂i that, due to the nature of the model,

could never compete to fire first in marking µ̂i. Without actually executing the model, there is

no way we can know this. Consequently, we assume the worst case. Similarly, the well-defined

check checks that for all states {µ : µ̂i  µ}, Pr[µ  µ̂|TD ∩ EN µ̂i ] is defined. Again, all the

states that are checked may not be in fact reachable, but without executing the model, there

is no way of knowing this for sure (in general). Thus, we make the conservative assumption.

An attempt at creating an algorithm that performs these sufficient checks for well-defined-2

and well-specified are given in Figures 5 and 6.

Note that the sufficient well-specified and sufficient well-defined checks can be used in
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well-defined-check(µ̂0 : Σ̂)

well-defined-recurse(µ̂0, TD ∩ EN µ0 , true)

well-defined-recurse(µi : Σ, T ci : 2T , root : bool) : ~P

If µi ∈ Σ̂ ∩ root = false

Let ~P = ~0

~P (µi, 0) := 1

return ~P

Else

∀gk ∈ PG(µi)

Let ~Pk = ~0

∀t ∈ gk ∩ Tc
i

Let µj = φ(µi, t)

Let pij = W(µi,t)F (µi,t)(0)∑
tj∈gk∩Tc

i
W(µi,tj)F (µi,tj)(0)

Let i = Im(µi, t)

Let Tc
k = (Tc

i ∪ TI
µj

) ∩ EN µj

Let ~P ′ = well-defined-recurse(µj, Tc
k, false)

~Pk(µi, ◦) = ~Pk(µi, ◦) + ~P ′(µj, ◦ − i)pij
End ∀t

End ∀gk
If |{~Pk : gk ∈ PG(µi)}| > 1

Failed well-defined check

Else

return ~P1

End if

End if

Figure 5: Sufficient well-defined check for MGSMP models.
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well-specified-check(µ̂i : Σ̂)

Let ~P = well-specified-recurse(µi, TD ∩ EN µi , true)

If η ∈ ~P

Failed well-specified check

End if

well-specified-recurse(µi : Σ, Tc
i : 2T, root : bool) : ~P

if µi ∈ Σ̂ ∩ root = false

Let ~P = ~0

~P (µi, 0) := 1

return ~P

Else

∀gk ∈ PG(µi)

Let ~Pk = ~0

∀t ∈ gk ∩ Tc
i

Let µj = φ(µi, t)

Let pij = W(µi,t)F (µi,t)(0)∑
tj∈gk∩Tc

i
W(µi,tj)F (µi,tj)(0)

Let i = Im(µi, t)

Let Tc
k = (TC

i ∪ TI
µj

) ∩ EN µj

Let ~P ′ = well-specified-recurse(µj, Tc
k, false)

~Pk(µi, ◦) = ~Pk(µi, ◦)⊕ ~P ′(µj, ◦ − i)� pij
End ∀t

End ∀gk
return ~P1

End if

Figure 6: Well-specified algorithm for IFR models.
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conjunction with the well-specified and well-defined checks as a two-level screening process. A

model can be subjected to the sufficient well-specified or sufficient well-defined checks first. If

the model passes the checks, then the model is well-specified or well-defined. If the check fails

and the modeler believes the model to be correct, then the well-specified or well-defined check

can be used while the model is executing to ensure correctness.
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5 Conclusion

The theoretical foundations for expressing simple forms of non-determinism in probabilistic

models has much to be desired. Competing definitions, checks, and formalisms have made the

progress and analysis difficult. Furthermore, assertions without proofs have led to widely-used

and incorrect definitions. Two non-structural definitions that are used in the community are

well-specified and well-defined. Unfortunately, lack of rigor and a common formalism have led

to misunderstandings and unnecessary complexity.

In this work, we address the issues in a much more rigorous way. We begin by formally

describing the formalism and stochastic process, so we can reason formally about it. We then

apply the definitions of well-specified and well-defined, and then (formally) show under what

conditions they are equivalent.

Furthermore, the widely used class of simulation languages fall under the GSMP formalism,

which is carefully constructed so that it does not allow for any non-determinism. As we argue

from physics, this is an artificial and unrealistic representation of reality. We modify the

definition of GSMP to allow for some forms of ambiguity, and then apply the well-specified

and well-defined definitions. It is difficult to check for either condition in GSMPs due to the

uncountable number of states, so we propose a sufficient condition that can be used.

There is significant future work to be done on this problem. First, there are a number

of “holes” that need to be removed. For example, the proof that the well-specified and well-

defined algorithm are correct needs to be performed. While we are confident that it is true,

and a proof would be straightforward, it should still be done, since previous experience has

shown that confidence is not a good indicator of correctness. Second, an algorithm that accepts

cycles should be explored. Currently, the algorithms work (terminate) on cycle-free unstable

markings.

The work with modified GSMPs needs to be completed. While a sufficient condition is

stated, no proof of its sufficiency is offered. Furthermore, there is a possibility of using more

information (if available) to make a tighter sufficient condition. Frequently, transitions in

models are either timed or immediate, i.e., the time to completion is always greater than zero

or equal to zero. That information could be used to build tighter sufficient conditions.
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We should also provide proofs for classes of formalisms that do allow for some non-determinism

that the IFR really is an intermediate formalism representation, and thus that the results for

IFR will also hold for the higher-level formalisms, such as SANs and GSPNs.

Finally, we should explore broader forms of non-determinism, such as that found in bisim-

ulation.
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