
End-to-End Monitoring of Network Traffic and
Congestion Events on the Planet-Lab Network with

the pmclient and pmserver Tools

Matthew Cook, Joshua Lu and Victor Frost

ITTC-FY2005-TR-30540-01

September 2004

Copyright © 2004:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7612
All rights reserved.

Project Sponsor:
National Science Foundation

Technical Report

The University of Kansas

 2

Abstract
The pmclient and pmserver programs are used to measure the network traffic

conditions between two given nodes on the Planet-Lab network. By running the pmclient
program on a Planet-Lab node, and the pmserver program on a corresponding node, the
two programs produce a dynamic flow of traffic in the form of UDP packets and
optionally IPv4 ICMP echo packets between the two nodes as a series of variable rate
probes.

The pmclient and pmserver programs record and statistically analyze various
measurements on this traffic including round trip time and time to live of UDP and IPv4
ICMP echo packets that make up the traffic. As delays in traffic increase beyond a
statistically significant threshold, which is dynamically determined, or if network events
such as route changes or packet loss are detected, the probing rate of the pmclient
program increases to capture as much information as possible about the potential network
traffic event. When traffic measurements again fall below a statistically significant
threshold, the probing rate then drops to a lower level.

In addition to UDP probing delays and optional IPv4 ICMP probing delays,
traceroute measurements can also be performed and recorded on a dynamic basis based
on traffic conditions. The pmclient and pmserver programs record all of these
measurements so that later analysis can be performed to characterize specific network
traffic events.

Along with the pmclient and pmserver programs is provided a network of scripts
that can be used to maintain the pmclient and pmserver programs over a large network of
Planet-Lab nodes with relative ease.

 3

Table of Contents
Abstract 2
Table of Contents 3

Table of Figures 3
1 – Introduction 4
1 – Introduction 4
2 – Planet-Lab 4

2.1 – Node Configuration 5
2.2 – Current Node Allotment 5
2.3 – Installing Programs and Setting Up Node Environment 6
2.4 – Directory Structure 7
2.5 – Installing Additional Components 8

3 – The pmclient and pmserver Programs 9
3.1 – Setting Up the Local Environment 9
3.2 – Program Design 9

3.2.1 – Burst State 11
3.2.2 – Normal State 12
3.2.3 – Congested State 12

3.3 – Program Specification 13
3.3.1 – Command Line Options 14
3.3.2 – Program Output 15
3.3.2.1 – pmclient Output 15

3.3.2.1.1 – Sent Packet Log: MMDDYY_sent.txt 15
3.3.2.1.2 – Received Packet Log: MMDDYY_rtt.txt 15
3.3.2.1.3 – ICMP Error Messages: MMDDYY_loss.txt 16
3.3.2.1.4 – Traceroute Data: MMDDYY_trace_full.txt 16
3.3.2.1.5 – Ping Log: MMDDYY_ping.txt 16
3.3.2.1.6 – Program History: rttlog 16

3.3.2.2 – pmserver Output 16
3.3.2.2.1 – Packet Receive Log: MMDDYY_server.txt 17
3.3.2.2.2 – Lost Packet Log: MMDDYY_forward_losses.txt 17

3.4 – Running the Programs 17
3.4.1 – Starting the Programs 17
3.4.2 – Stopping the Programs 18
3.5 – Program Notes 18

4 – Process Maintenance and Data Collection 20
4.1 – System Requirements 20

4.1.1 – pssh 20
4.1.2 – ssh-agent 20

4.2 – Optional Tools 21
4.2.1 – screen 21

4.3 – The exec_pm_dl Script 21
4.4 – The getpmdata Automation Script 21
4.5 – The stopall.sh Script 22
4.6 – Examples 22

Appendix A – ICMP Types and Codes 24

Table of Figures
Table 2.1 – Production Nodes 6
Table 2.2 – Testing Nodes 6
Table 2.3 – Directory Structure 8
Table 3.1 – Definition of Terms 10
Figure 3.1 – PingMonitor State Transitions 11
Figure 3.2 – Short Program Run Interval 13
Table 3.2 – Output Format Key 15

 4

1 – Introduction
Two methods that are typically used to monitor traffic levels and performance on

a network are active and passive measurements. Passive measurements involve the
observation of network traffic as it passes by the interface of a host on that network. This
form of monitoring is usually implemented as a Sniffer, OCxMon, or built into devices
such as routers or end node hosts. Active measurements, on the hand create artificial
traffic by injecting packets into the network and measuring aspects of their transmission.
Both approaches have their respective advantages and disadvantages and are more
suitable in different situations and for different goals.

The goals of the National Science Foundation project Quantifying the Temporal
Characteristics of Congestion Events in the Internet are to detect and characterize
network events that have a significant impact on the end user. To further this goal, the
PingMonitor suite of programs was developed to perform active measurements in order
to determine the end-to-end performance of traffic generated by a generic end user
application on a large network such as the Internet.

The PingMonitor programs apply an adaptive algorithm that increases and
decreases the probing rate of the injected traffic based on the delays and packet losses.
This system allows the PingMonitor program to minimize the amount of artificial traffic
introduced to the network while at the same time collecting as much data as possible on
each potential network traffic event as it occurs.

This document describes the design of the PingMonitor suite of programs, and
how they are used. This included: descriptions of the testing environment in which the
programs run; how this environment is set up; how to install and run the PingMonitor
programs; how to set up a local environment to maintain the programs; and how to
maintain and collect data from the running programs remotely.

2 – Planet-Lab
From the Planet-Lab web site:

“PlanetLab is an open, globally distributed platform for developing, deploying and
accessing planetary-scale network services. PlanetLab nodes support both short-
term experiments and long-running network services…”

“PlanetLab creates a unique environment in which to conduct experiments at Internet
Scale. The most obvious is that network services deployed on PlanetLab experience
all of the behaviors of the real Internet where the only thing predictable is
unpredictability (latency, bandwidth, paths taken). A second advantage is that
PlanetLab provides a diverse perspective on the Internet in terms of connection
properties, network presence, and geographical location. The broad perspective on
the Internet enables development and deployment of a new class of services that
see the network from many different vantage points.”[1]

For the purposes of the pmclient and pmserver programs, the Planet-Lab network

provides a pool of geographically diverse networked Internet nodes on which network
traffic measurements can be made under real world traffic conditions, but in a

 5

homogeneous and controlled experimental environment. Currently, the National Science
Foundation project Quantifying the Temporal Characteristics of Congestion Events in the
Internet for which the pmclient and pmserver programs were developed is conducting
experiments using the pmclient and pmserver programs on 42 Planet-Lab nodes located
around the world.

2.1 – Node Configuration
Each Planet-Lab node is set up to allow many user accounts, or “slices” in Planet-

Lab terms to access and use each node at any given time. To provide a consistent
environment for each slice, each node is run as a set of virtual Linux servers, or vservers,
each based on a Planet-Lab variant of RedHat Linux version 9. Each slice is provided
with a bare-bones system over which users of that slice have limited superuser privileges.
Each slice is assigned to a research group, and that research group can then allocate
accounts on any number of Planet-Lab nodes from which they can then run their
respective experiments.

Each Planet-Lab node shares a single network interface, and so to prevent
separate slices running on the same physical machine from interfering with each other’s
network traffic, network programs running on Planet-Lab must be written using safe raw-
sockets. Safe raw-sockets are an implementation of the standard BSD UNIX sockets
API. For details on safe raw-sockets, please see [2]. The pmclient and pmserver
programs both utilize the safe raw-sockets API.

2.2 – Current Node Allotment
The NSF project Quantifying the Temporal Characteristics of Congestion Events

in the Internet has been allotted the “kansas_1” slice with which to conduct its
experiments. The kansas_1 slice is currently running active measurements using the
pmclient and pmserver programs on the Planet-Lab nodes listed in table 2.1:

 6

Table 2.1 – Production Nodes

pli1-pa-2.hpl.hp.com

pli1-pa-3.hpl.hp.com

planetlab5.nbgisp.com

planetlab1.cs.duke.edu

planetlab1.iis.sinica.edu.tw

planetlab2.cs.duke.edu

planetlab1.frankfurt.interxion.planet-lab.org

planetlab2.frankfurt.interxion.planet-lab.org

planetlab2.iis.sinica.edu.tw

planetlab-1.stva.nodes.planet-lab.org

planetlab-1.scla.nodes.planet-lab.org

planetlab-2.scla.nodes.planet-lab.org

planet1.seattle.intel-research.net

planet2.seattle.intel-research.net

planetlab-2.stva.nodes.planet-lab.org

planet1.berkeley.intel-research.net

planetlab1.cambridge.intel-research.net

planetlab2.cambridge.intel-research.net

planet1.pittsburgh.intel-research.net

planet2.pittsburgh.intel-research.net

planet2.berkeley.intel-research.net

planetlab1.gti-dsl.nodes.planet-lab.org

planetlab1.comet.columbia.edu

planetlab2.comet.columbia.edu

planet1.leixlip.nodes.planet-lab.org

planetlab01.ethz.ch

planetlab02.ethz.ch

planetlab1.diku.dk

planetlab2.diku.dk

planet2.leixlip.nodes.planet-lab.org

planetlab1.koganei.wide.ad.jp

pl1.6test.edu.cn

pl2.6test.edu.cn

planet1.cavite.nodes.planet-lab.org

planet2.cavite.nodes.planet-lab.org

planetlab2.koganei.wide.ad.jp

planetlab1.cs.cornell.edu

planetlab1.cslab.ece.ntua.gr

planetlab2.cslab.ece.ntua.gr

planetlab1.eurecom.fr

This list was taken from the ~/nsfqos/data_retrevial/planetlab_nodes_list.txt file

which is part of the pingmonitor.tar.gz archive. For more information on this file, see
Setting Up the Local Environment later in this document.

In addition, the kansas_1 slice has accounts on the following nodes, which are
used to test beta versions and future releases of the pmclient and pmserver programs
before placing them on the main nodes. These nodes are listed in Table 2.2.

Table 2.2 – Testing Nodes
planlab1.cs.caltech.edu

planetlab1.csail.mit.edu

kupl1.ittc.ku.edu

kupl2.ittc.ku.edu

Because these nodes are used for testing, they have been outfitted with a wider
variety of programs and tools than the standard production nodes. For more information
on installing additional programs, see the Installing Additional Components section
below.

2.3 – Installing Programs and Setting Up Node Environment
The pmclient and pmserver programs require a specific environment to be in

place on any Planet-Lab node on which they run. This environment consists of a set of
scripts and helper programs and a specific directory hierarchy to hold them and output
from the programs. Setting up this structure is easily done using one of the
remotesync.sh Bash shell scripts found in the ~/nsfqos/template directory unpacked from

 7

the pingmonitor.tar.gz file. For more information on this file see the Setting Up The
Local Environment section later in this document.

This bash script is used to upload or update the file structure of the home
directory of the kansas_1 slice account on all of the 40 production Planet-Lab nodes used
by kansas_1, or to upload or update files to any list of provided nodes. The program
utilizes the rsync command to transfer only the files that are necessary, and will
reproduce the contents of the ~/nsfqos/template directory and its subdirectories in the
/home/kansas_1 folder on each node it processes.

In turn, the ~/nsfqos/template directory is a specially constructed directory of
symlinks pointing to the appropriate files, folders, and scripts elsewhere in the ~/nsfqos
directory that need to be uploaded. In this way, as changes are made to files and
programs in anywhere in ~/nsfqos, those changes will be reflected in the template
directory automatically, and can be uploaded to nodes with one of the remotesync.sh
scripts. For more information about the template directory or the remotesync.sh scripts,
see the readme.rtf file in the ~/nsfqos/template directory.
 To run one of the remotesync.sh scripts to update all of the kansas_1 production
nodes, issue the following command:

% . / r emot esync. sh
- - - f oo. bar . pl anet - l ab. or g - - -
Ent er passphr ase f or key ' / user s/ mcook/ . ssh/ i dent i t y ' :
bui l di ng f i l e l i st . . .
36 f i l es t o consi der
<out put omi t t ed>
- - - f oo. bar . pl anet - l ab. or g - - -
Ent er passphr ase f or key ' / user s/ mcook/ . ssh/ i dent i t y ' :
bui l di ng f i l e l i st . . .
36 f i l es t o consi der
<out put omi t t ed>
<et c. . . >

This will run through each node, one by one, and upload the necessary files. As the script
runs, each node will require the user to enter the secure shell passphrase before files can
be uploaded. Because this can be tiresome, it is often wise to run this script under ssh-
agent (see the ssh-agent heading of the Process Maintenance and Data Collection section
later in this document).

If you wish to only update a specific node, or a list of specific nodes, simply enter
the fully qualified domain names of each server after the remotesync.sh command
separated by spaces on the command line.

2.4 – Directory Structure
Once setup, the Planet-Lab node will contain a set of directories placed in the

home directory for the kansas_1 user /home/kansas_1/ or generally ~/kansas_1. Table
2.3 is a short description of each directory.

 8

Table 2.3 – Directory Structure
~/backup
~/backup/client
~/backup/server

This directory contains backed up copies of program output
files. The files are transferred from the ~/completed/client and
~/completed/server directories by the exec_pm_dl process
maintenance script (see Process Maintenance later in this
document.)

~/bin This directory contains the pmclient and pmserver binary
executable, as well as several other binary programs used by
pmclient.

~/bin/scripts This directory contains bash scripts used for process
maintenance and for starting and stopping the pmclient and
pmserver programs.

~/bin/source This directory contains copies of the source code files for
pmclient and pmserver, as well as backup copies of the binary
executables.

~/client This directory contains output files produced by the pmclient
program.

~/server This directory contains output files produced by the pmserver
program.

~/completed/client
~/completed/server

This directory contains completed output files from the pmclient
and pmserver programs respectively. The files are transferred
here by each program from the ~/client and ~/server programs at
the end of each day.

~/configure This is the configuration file that is read by the pmclient
program.

~/current This is a file containing the revision number of the currently
running program. This number corresponds to the revision
numberd folders found in the ~/nsfqos/source/legacy source/
directory, and is currently only found on testing nodes as a
convenience.

2.5 – Installing Additional Components
The remotesync program will provide the Planet-Lab node with everything that is

required to run the pmclient and pmserver programs successfully. However, because
each node is setup as a bare-bones system, it is often useful, especially on testing nodes,
to install additional programs. This can most efficiently be done by installing the yum
package manager, which has been converted for use on Planet-Lab. For more
information about yum, and for instruction on installing it, please see the Installing
RPM’s section of the Planet-Lab User’s Guide [3].

 9

3 – The pmclient and pmserver Programs
The pmclient and pmserver programs perform active measurements on the Planet-

Lab network. These two programs together comprise a complete system, and are divided
into two modules according to the standard client-server model. The pmserver program
simply sits on a node and listens for packets sent by the pmclient program. When it
receives packets, the pmserver program quickly echoes the packets back to the client, and
then records information about the packets that were received.
 The pmclient program on the other hand is the workhorse of the pair. It utilizes
an adaptive algorithm to continuously send UDP packets at variable rates to a remote host
running the pmserver program. The client records: what packets were sent and when;
when and if those packets returned from the server; and information about their trip such
as round trip time, time to live, and ICMP error messages received from their
transmission. In addition, the pmclient program can be configured to send IPv4 ICMP
echo packets in parallel with the UDP packets, and to take periodic traceroute
measurements.

3.1 – Setting Up the Local Environment
 Aside from the specific environment the pmclient and pmserver programs require
on each node to run, there is also a specific environment that is required by the
supporting scripts and programs that help to maintain the pmclient and pmserver
programs on a local system. Unpacking the pingmonitor.tar.gz file provides this
environment.
 Once unpacked, this file will produce a folder named nsfqos that contains a
system of subfolders, each of which contains various scripts, files, and programs
including the pmclient and pmserver programs and their source code. This folder should
be placed in the user’s home directory, and will be referenced in this document as the
~/nsfqos folder. For more information on the scripts, programs, and files in this
directory, see the various readme.rtf files found throughout the folder system, and the
Process Maintenance and Data Collection section later in this document.

3.2 – Program Design
In performing measurements in a dynamic environment such as the Internet, we

wish to change and adapt our measurement rate as the network transitions between
“broken” and “normal” states. While the term “broken” may be an overly simplified
characterization of the actual state of the network, an aspect fairly consistent among all
network events that cause performance degradations are increased delays and packet
losses. In order to catch these network events as early as possible and record the
behavior of the network throughout the duration of the particular event, we increase our
probing rate when delays reach and exceed a certain threshold or when a certain loss rate
is met. Similarly as the network transitions back into a “normal” state where delays and
loss rate are below certain thresholds, the probing rate is decreased.

 10

Table 3.1 – Definition of Terms
Term Definition
n Burst size. Default = 30

tα

 Maximum time between bursts (s). Default = 900

bt

 Time between probes within a burst (s/probe). Default = 1

ct
 Time between probes during congestion (s/probe). Default = 5

nt
 Time between probes under normal network conditions (s/probe), Default =
30

lt
 Packet timeout (s). Default = 2

N Total packets sent

irtt
 Round trip time of packet containing sequence number i

β
 burst loss ratio threshold. Default = 10%

RTT

 Mean round trip time over entire sample where

1

N

i
i

rtt
RTT

N
==
∑

bRTT

 Mean round trip time of the most recently completed burst,

As shown in Figure 3.1, the program will be in one of three states at any given time:
normal, burst, and congested. The states normal and congested correspond to the
network states normal and broken as described previously where the intervals between

probes are nt and ct respectively. While in the burst state, the program sends a burst of

n probes with an interval of bt between probes. Movement between states is dependent
on the delays and packet loss rates.

 11

Figure 3.1 – PingMonitor State Transitions

3.2.1 – Burst State
The burst state is an intermediate state when moving from the normal to

congested states. It is also the initial state at the program start. A burst of n probes with

an interval of bt between probes is sent from the source node to the destination node. If
the program is set to take additional traceroute measurements, then such measurements
are taken at the beginning of this burst period unless the program has just started. After

sending all n probes and waiting lt seconds, if the last probe failed to return, the
following are calculated:

1. mean round trip time of the probes sent during the burst: bRTT

a n

j
j a

b

rtt

RTT
n

+

==
∑

 12

where a is the sequence number of the first packet sent in the burst

2. packet loss ratio

packet loss ratio =

packetsreceived inburst

packetssent inburst

Conditions for moving to the congested state include:

1. the mean RTT of the burst set is not within 2 * the standard deviation of the mean
RTT of the entire program run

2.)2,2(stddevRTTstddevRTTRTTb ∗+∗−∉

3. the packet loss ratio is greater than the packet loss threshold, β

If none of the previous conditions are met, the state is set to the normal state where the

next probe will be sent in nt seconds. Otherwise, the next probe is sent in ct seconds
and next state set to congested.

3.2.2 – Normal State
The program should stay in the normal while queuing delays are nominal and

packet losses nonexistent. Probes are sent at a rate of one probe every nt seconds so long
as the RTTs are within 2 * the standard deviation of the mean of the RTT of the entire
program run and the probes are not lost. However if

)2,2(stddevRTTstddevRTTrttN ∗+∗−∉ , ∞=Nrtt if the packet is lost

then the next state is set to burst and a burst performed immediately.

3.2.3 – Congested State
As traffic increases and queues build up in the intermediate routers between the

source and destination, the RTTs will increase and be dominated by queuing delays. The
program will only remain in the congested state for events that last a minimum of

Cntb +* seconds. The term ntb* takes into account the time required to perform a
burst while C denotes the time required for the additional measurements. The additional
measurements can take a variable amount of time when transitioning from the normal
state.

The program will remain in the congested state and continually send probes at a

rate of one probe every ct seconds while the RTTs remain outside of 2 * the standard
deviation of the mean RTT of the entire program run. Once the queuing subsides and

 13

delays return to normal, the program will set the next state to normal and schedule the

next probe to be sent in nt seconds.

An example short interval of the program run is displayed in Figure 3.2. The
program performs five state transitions in the following order:

1. burst
2. normal
3. burst
4. congested
5. normal

Figure 3.2 – Short Program Run Interval

These transitions should correspond with the network displaying normal activity,
becoming “broken” for period, and finally returning back to normal conditions.

3.3 – Program Specification
Both the pmclient and pmserver programs have a complement of command line

arguments allowing the user to control the behavior of the programs and the algorithms
used. In addition, each program produces a number of output files. These options and
output files are outlined below.

 14

3.3.1 – Command Line Options
pmclient [-igtd] [-n burst_size] [-a burst_interval] [-b burst_probe_interval]
 [-c congestion_probe_interval] [-n normal_probe_interval] [-l packet_timeout]
[-p local_port] [-r remote_port] destination_hostname

-t Perform traceroutes
-i Send IPv4 ICMP echo packets in

conjunction with UDP traffic.
-d Print debugging output to standard out.
-g Read from previous sessions on program

startup and write to on program termination
the mean and variance from the file, rttlog.

-n burst_size Specify the number of probes to be sent in
a burst. Default = 30

-a burst_interval Wait a maximum of burst_interval seconds
after a burst has completed before initiating
another burst. Default = 900

-b burst_probe_interval Wait burst_probe_interval seconds between
sending packets during a burst. Default = 1

-c
congestion_probe_interval

Wait congestion_probe_interval seconds
between sending packets during
congestion. Default = 5

-n normal_probe_interval Wait normal_probe_interval seconds
between sending packets during normal
network conditions. Default = 30

-l packet_timeout After a packet has been sent, specify the
timeout in seconds before assuming the
packet was lost. Default = 2

-p local_port Specify the local port. Default = 8762
-r remote_port Specify the destination port. Default =

8761
destination_hostname Specify the hostname of the destination. If

omitted, the destination is read from the
configure file.

pmserver [-p port]

-p port Specify the local port. Default = 8761

 15

3.3.2 – Program Output
Both the pmclient and pmserver programs produce output in the form of flat

ASCII UNIX text files. These files follow a regular, tabular format, and include
formatted data as described in Table 3.2

Table 3.2 – Output Format Key
Tag Format
<date&time> M/D/YYYY H:M:S
<seq num> Positive integers greater than 0
<rtt> Round Trip Time measured in

milliseconds to one decimal place of
precision.

<route_change_flag> This flag is deprecated, and will always
appear as 0.

<stddev> Standard Deviation measured in
milliseconds.

<ttl> Time To Live, integer values between 1
and 255.

<ICMP error type> An integer value between 0 and 40 (see
appendix A)

<ICMP error code> An integer value between 0 and 14 (see
appendix A)

<ping output> A line of output produced by the ping
program. (see the Ping Sent Log section
below)

3.3.2.1 – pmclient Output
Information on packets sent, received, and potentially lost is outputted to file and

stored in the ~/client bin at each PlanetLab node. All client output files contain a two-
line header of the form:

SOURCE: , pl ab1. nec- l abs. com, 138. 15. 10. 55
TARGET: , pl anet l ab1. nbgi sp. com, 198. 78. 49. 52

SOURCE indicates the hostname and IP address of the machine the client is running on
while TARGET specifies the hostname and IP address of the machine the server is
running on.

3.3.2.1.1 – Sent Packet Log: MMDDYY_sent.txt
Two columns display the time each packet was sent alongside its sequence

number.

<dat e&t i me>, <seq num>

3.3.2.1.2 – Received Packet Log: MMDDYY_rtt.txt

Information about each individual packet received by the client.

 16

<t i me&dat e>, <seq num>, <r t t >, <r out e_change_f l ag>, <st ddev>, <t t l >

3.3.2.1.3 – ICMP Error Messages: MMDDYY_loss.txt
ICMP error messages received by the client. See Appendix A for a full list of

message types and codes.

<t i me&dat e>, < I CMP er r or t ype>, < I CMP er r or code>, < sendi ng I P addr ess >

3.3.2.1.4 – Traceroute Data: MMDDYY_trace_full.txt

Raw traceroute data is stored to file if traceroutes are enabled with the –t
command line option. This file will also include any errors produced by the traceroute
program

3.3.2.1.5 – Ping Log: MMDDYY_ping.txt
A log of ping packets sent and received. The <ping output> tag contains a line

produced by the ping program. This line contains the size of the data sent, the IP address
of server, the sequence number of the ICMP message (always 1), the time to live
measured as 64 minus the number of routers on the path back to the client from the
server, and the round trip time in milliseconds. For more information on the ping
program, see the UNIX manual page for ping.

<seq num>, <pi ng out put >

3.3.2.1.6 – Program History: rttlog
The information necessary to calculate the mean and variance of a previous

session can be stored in the file, rttlog. If invoked with the –g option, the program will
check the target hostname and IP address of the local machine and compare them with
the hostname and IP in the rttlog. The mean and variance are then read from file if a
match is found. When the program exits, the mean and variance will then be written to
the rttlog. Figure 3.3 described the format.

3.3.2.2 – pmserver Output
Information on packets received and potentially lost in the forward route is

outputted to file and stored in the ~/server bin at each PlanetLab node. All server output
files contain a single line header that contains the hostname and IP address of the
machine the server is running on. For example:

SERVER: pl anet l ab1. i i s. s i ni ca. edu. t w 140. 109. 17. 180

Figure 4 - rttlog Format

 target hostname
 target IP address
 sum of all rtt times
 sum of all rtt2 times
 total packets sent
 total packets received

 17

3.3.2.2.1 – Packet Receive Log: MMDDYY_server.txt
Two columns, the sequence number and ttl of packets arriving at the server.

<seq num>, <t t l >

3.3.2.2.2 – Lost Packet Log: MMDDYY_forward_losses.txt

A single column contains the sequence numbers of packets that have been
potentially lost in the forward direction from client to server.

<seq num>

3.4 – Running the Programs
The pmclient and pmserver programs are designed to run as background daemon

processes on a Planet-Lab node. When the pmclient or pmserver program is started, it
will print a short message and then return the user to the shell and run in the background.
To stop the pmclient or pmserver programs once they have been started, it is necessary to
send a TERM signal to the active process using the UNIX kill command.

Although it is possible to start and stop the pmclient and pmserver programs by
calling the command with the correct arguments and then calling the kill command, to
simplify this process, a set of start and stop scripts are installed in the ~/bin/scripts/
directory on each Planet-Lab node by the remotesync.sh install program. This method is
useful to start a single instance of the program on a single Planet-Lab node, see Process
Maintenance and Data Collection below for a method to maintain a system of nodes.

3.4.1 – Starting the Programs
The startpmc.sh and startpms.sh scripts are used to start the pmclient and

pmserver programs respectively if they are not already running. If the programs are
already running, the scripts will simply notify the user of this fact and exit. To start the
pmclient program, simply run the ~/bin/scripts/startpmc.sh script like so:

[kansas_1@kupl 1 kansas_1] $. / bi n/ scr i pt s/ st ar t pmc. sh
-
kupl 1. i t t c. ku. edu
pmcl i ent : st ar t i ng * * *
usage: pmcl i ent [opt i ons] r emot e host
/ home/ kansas_1/ bi n/ t r acer out e - n 129. 237. 123. 251 2>&1
/ home/ kansas_1/ bi n/ pi ng - c 1 - n - w 5 129. 237. 123. 251 | gr ep f r om
14
04
SOURCE = kupl 1. i t t c. ku. edu
TARGET = kupl 2. i t t c. ku. edu
-
[kansas_1@kupl 1 kansas_1] $

Similarly, to start the pmserver process, simply run the ~/bin/scripts/startpms.sh

script like so:

[kansas_1@kupl 1 kansas_1] $. / bi n/ scr i pt s/ st ar t pms. sh
-
kupl 1. i t t c. ku. edu
pmser ver : st ar t i ng * * *
-
[kansas_1@kupl 1 kansas_1] $

 18

3.4.2 – Stopping the Programs
The stoppmc.sh and stoppms.sh scripts are used to stop the pmclient and pmserver

programs respectively if they are running. If the programs are not running, the scripts
will simply notify the user of this fact and exit. To stop the pmclient program, simply run
the ~/bin/scripts/stoppmc.sh script like so:

[kansas_1@kupl 1 kansas_1] $. / bi n/ scr i pt s/ st oppmc. sh
-
kupl 1. i t t c. ku. edu
27411
pmcl i ent : st opped
pi ng: not r unni ng * * *
-
[kansas_1@kupl 1 kansas_1] $

 Similarly, to stop the pmserver program, run the ~/bin/scripts/stoppms.sh script
like so:

[kansas_1@kupl 1 kansas_1] $. / bi n/ scr i pt s/ st oppms. sh
-
kupl 1. i t t c. ku. edu
30264
pmser ver : st opped
-
[kansas_1@kupl 1 kansas_1] $

3.5 – Program Notes
There are a few scenarios under which the pmclient and pmserver programs may

produce unexpected output or perform in an unexpected manor. Some of these scenarios
are considered bugs and will hopefully be fixed in later releases while others are simply
considered expected behavior for the program in question.

o The pmserver program creates its data files once when the program is first

executed. After this, the program checks each time a packet is received if it needs
to rotate its log files. Because of this design, if the pmserver program receives no
packets for an extended period of time, then no new output files will be created
for the duration of that time. This does not indicate that the program has crashed,
but only that it has not received packets from the pmclient program.

o When a packet is received by the pmserver program with a sequence number

larger than the expected sequence number, all sequence numbers between the last
successfully received number and the number just received are placed on a queue
in hope that the missing packets will arrive in the near future. This queue holds 5
sequence numbers, and when it is full, sequence numbers are written out of the
queue into the MMDDYY_forward_losses.txt file on a first-in-last-out basis. If
no sequence numbers are lost for a period of time, then a lost sequence number
can remain in the queue for some time, causing it to be written to the losses file at
a time much later than it was sent from the pmclient program.

o When running the pmclient program with the –i option to include parallel IPv4

ICMP echo packets with the UDP packets that are normally sent, in some

 19

situations the program can become stuck. This occurs when the remote system to
which pings are being directed filters ICMP echo traffic. In this situation, the call
to the ping program in pmclient can hang, stopping all traffic, UDP or ICMP,
from the program.

 20

4 – Process Maintenance and Data Collection
Although it is possible to use the methods described in the previous section to

start and stop the program on a small number of nodes, this process can quickly become
tedious with more than just a few nodes running the programs. To make it easer to start,
stop and maintain the pmclient and pmserver programs on a long list of Planet-Lab
nodes, as well as collect the output files from all of these systems to a central location, a
set of process maintenance and data retrieval scripts have been created and are located in
the ~/nsfqos/data_retrieval folder unpacked from the pingmonitor.tar.gz file. For more
information on files in this directory, and for more detailed usage information on the
scripts described below, please see the ~/nsfqos/data_retrevial/readme.rtf file.

4.1 – System Requirements
These scripts utilize a number of UNIX programs that must be installed before the

scripts can run. These tools are outlined below.

4.1.1 – pssh
The pssh set of programs includes parallel versions of openssh tools including

ssh, scp, and rsync which allow a user to run remote procedure calls or transfer files from
multiple hosts simultaneously over a secure ssh connection. By default, up to 32 ssh
processes can be run at a given time allowing program updates to be deployed, data sets
retrieved, and remote scripts to be run on a large set of nodes all at once.

The pssh program is used by the process maintenance scripts to remotely run the
startpmc.sh, startpms.sh, stoppmc.sh, and stoppms.sh start and stop scripts described in
the Running the Programs section on each Planet-Lab node. A RedHat Package Manager
file containing the pssh programs is located in the ~/nsfqos/tools directory, or can be
obtained from [4].

4.1.2 – ssh-agent
Because these scripts utilize the secure shell as a transport medium for moving

files and running commands on each node, this process required the user to enter a
passphrase for each connection that is made. The ssh-agent program allows a user to
enter his or her ssh-passphrase once and then have the ssh-agent program take care of
authentication with each subsequent connection to a remote host.

To use the ssh-agent program, the Planet-Lab ssh keys found in the
~/nsfqos/ssh_keys directory must first be placed into the current user’s ~/.ssh/ folder.
Once this is done, enter the following commands.

$ ssh- agent bash
$ ssh- add
Ent er passphr ase f or / User s/ admi n/ . ssh/ i dent i t y: <ent er passphr ase>
I dent i t y added: / User s/ admi n/ . ssh/ i dent i t y (/ User s/ admi n/ . ssh/ i dent i t y)
$

You can now connect to the Planet-Lab nodes associated with that ssh-key

without entering your passphrase, or run any of the process maintenance and data
retrieval scripts unattended. Note that once you log out or close the xterm window in
which you started ssh-agent, the ssh-agent program will exit, and will no longer fill in

 21

passwords for you. You must either remain logged in, or use the screen command as
outlined below in the Optional Tools section. The ssh-agent program is included with
most distributions as part of the secure shell package.

4.2 – Optional Tools
In addition to the required programs above, there are a few optional tools that can

make running the process maintenance scripts much easer. These tools are outlined
below.

4.2.1 – screen
The screen command allows you to start a terminal session, begin running

programs, and then detach that terminal session from your physical terminal. That
session continues to run in the background, and can later be reattached to your terminal,
or to any other remote terminal you log in from. For more information about the screen
command, please see the UNIX manual page for screen.

4.3 – The exec_pm_dl Script
The exec_pm_dl script is the main process maintenance and data retrieval script.

It can be found in the ~/nsfqos/data_retrieval directory. The script has 3 main functions,
each of which is turned on or off through the use of a command line flag. Although it is
possible to run this script by hand, the exec_pm_dl script is designed to be run by the
getpmdata automation script that is outlined in the next section.

When executed with the –r flag, the exec_pm_dl script will connect to each node
listed in the ~/nsfqos/data_retrevial/planetlab_node_list.txt file and run the startpmc.sh
and startpms.sh scripts on that node. This has the effect of starting the pmclient or
pmserver program if it is not running, or no effect if the program is already running as
outlined in the Starting the Programs section previously. The script will output which
nodes it was and was not able to connect to, and the output of the start script from each
node on which it was run.

When run with the –t flag, the exec_pm_dl script will make an rsync connection
to each node (listed internally in the script), and transfer files from that node’s ~/client/
and ~/server/ directories to appropriate folders in the /projects/nsfqos/fall_2004 directory
locally. The script will output the information about each transfer as it takes place. The
script will make 5 attempts to connect to each server to make the transfer.

When run with the –b flag, the exec_pm_dl script will connect to each node
outlined by the ~/nsfqos/data_retrevial/planetlab_node_list.txt file and move any files it
finds in the ~/completed/client/ and ~/completed/server/ folders on each node into the
~/backup/client and ~/backup/server folders respectively on the same node. The script
will output the success or failure of each connection and attempt to move files.

4.4 – The getpmdata Automation Script
The getpmdata script, which can be found in the ~/nsfqos/data_retrevial/ folder, is

used to call the exec_pm_dl script on a regular basis though the day. The script utilizes
the at deferred command scheduler to run the exec_pm_dl script every two hours over a
24 hour period, and then set up the same schedule for the next day. This process will

 22

continue indefinitely until the script is stopped. After each command is run, the at
daemon will email the output of the command to the user that ran the script.

The getpmdata script is set to call the exec_pm_dl script with the –t and –r
options every two hours to keep the processes running and transfer new data, and with the
–t, –r, and –b options once a day around midnight to additionally backup the data from
the previous day. The timings of the commands are offset from the top of the hour by 18
minutes to allow the pmclient and pmserver programs time to change to new output files
at midnight. Because this script is designed to run continuously, it is a good idea to run it
under ssh-agent.

4.5 – The stopall.sh Script
The stopall.sh script is used to connect to all of the Planet-Lab nodes listed in the

~/nsfqos/data_retrevial/planetlab_node_list.txt file and stop the pmclient and pmserver
programs running there using the stoppmc.sh and stoppms.sh scripts located on each node
and described in the Stopping the Programs section above. This script is provided as a
convenience and is generally used to stop all of the processes running on the nodes before
updating them with the remotesync.sh script to a new version and then restarting them.

When the script is run, it will output the success or failure of each connection and
the output of the stop-scripts run on each node. If you have Planet-Lab nodes that are
difficult to reach due to network congestion or distance, it is a good idea to run this script
several times to ensure that all nodes have been successfully stopped.

4.6 – Examples
What follows is an annotated example of the typical process of updating the

program on all of the Planet-Lab nodes. This example will illustrate stopping the local
maintenance scripts, stopping pmclient and pmserver processes on all of the nodes,
updating the nodes with new files, and restarting the maintenance scripts. With minor
changes, this process is identical to installing and starting the programs on a set of nodes
for the first time, or moving the maintenance scripts to a new local machine.

The first task is to stop the local maintenance scripts. You can do this by killing
the already running getpmdata script, and then removing any remaining jobs from the atq
with the atrm command.

% ki l l ` / sbi n/ pi dof get pmdat a` ` / sbi n/ pi dof s l eep`
% at q
733 2004- 08- 15 00: 18 a mcook
734 2004- 08- 15 02: 18 a mcook
735 2004- 08- 15 04: 18 a mcook
736 2004- 08- 15 06: 18 a mcook
737 2004- 08- 15 08: 18 a mcook
738 2004- 08- 15 10: 18 a mcook
740 2004- 08- 14 14: 18 a mcook
741 2004- 08- 14 16: 18 a mcook
742 2004- 08- 14 18: 18 a mcook
743 2004- 08- 14 20: 18 a mcook
744 2004- 08- 14 22: 18 a mcook
% at r m ` per l - e ' f or each(733. . 744) { pr i nt " $_ " ; } ' `

This small perl command will list number 733 – 744 on the command line separated by
spaces after the atrm command. You could just as easily list them yourself.

 23

Now we need to stop all of the server processes with the
~/nsfqos/data_retrevial/stopall.sh script. Because this will involve making many ssh
connections to the Planet-Lab nodes, we will run this command under ssh-agent.

% ssh- agent bash
$ ssh- add
Ent er passphr ase f or / user s/ mcook/ . ssh/ i dent i t y: <ent er passphr ase>
I dent i t y added: / user s/ mcook/ . ssh/ i dent i t y (/ user s/ mcook/ . ssh/ i dent i t y)
$ cd ~/ nsf qos/ dat a_r et r i eval /
$. / st opal l . sh
<out put omi t t ed>

As noted in the stopall.sh Script section above, it may be necessary to run this script
several times to ensure that all processes on all nodes have been stopped.

Next we will update the nodes with the ~/nsfqos/template/remotesync.sh script.
Note that we are still under ssh-agent.

$ cd . . / t empl at e/
$. / r emot esync. sh
<out put omi t t ed>
$ exi t
exi t
%

It's a good idea at this point to make note of any nodes that could not be updated because
of network problems. They will need to be updated at a later date when and if they
become reachable again. Also note that we have exited the bash shell and so stopped the
ssh-agent.

Now that the nodes are updated, all that remains is to restart the maintenance
scripts again. We will do this by first creating a virtual terminal with the screen
command, starting ssh-agent within this terminal, running the getpmdata script as a
background process, and then detaching the screen so that it can continue running until
we need to deal with it again. If the script had previously been started under the screen
command, then it may have been more convenient to reconnect to that screen before
starting this process, and then perform these commands all from within that terminal.

% scr een –S “ get pmdat a pr ocess”
% cd ~/ nsf qos/ dat a_r et r i eval /
/ user s/ mcook/ nsf qos/ dat a_r et r i eval
% ssh- agent bash
$ ssh- add
Ent er passphr ase f or / user s/ mcook/ . ssh/ i dent i t y: <ent er passphr ase>
I dent i t y added: / user s/ mcook/ . ssh/ i dent i t y (/ user s/ mcook/ . ssh/ i dent i t y)
$. / get pmdat a &
$^a^d

The last command is issued by the key combination Ctrl-a Ctrl-d, and causes the screen
program to detach from the currently running virtual terminal and return to the command
line. Now the exec_pm_dl script will run at the next 2-hour interval and restart the
pmclient and pmserver programs on each node. It is safe to close your command window
and logout, however, the local system must remain on for the scripts to run.

 24

Appendix A – ICMP Types and Codes
The following table of ICMP message types and codes is derived from John

Postel’s original paper on the ICMP protocol, now referenced as RFC 792. For more
information on the ICMP protocol, see references [5] – [11]
Type Name Ref er ence
- - - - - - - - - - - - - -
 0 Echo Repl y [RFC792]
 Codes
 0 No Code

 1 Unassi gned [JBP]
 2 Unassi gned [JBP]
 3 Dest i nat i on Unr eachabl e [RFC792]
 Codes
 0 Net Unr eachabl e
 1 Host Unr eachabl e
 2 Pr ot ocol Unr eachabl e
 3 Por t Unr eachabl e
 4 Fr agment at i on Needed and Don' t Fr agment was Set
 5 Sour ce Rout e Fai l ed
 6 Dest i nat i on Net wor k Unknown
 7 Dest i nat i on Host Unknown
 8 Sour ce Host I sol at ed
 9 Communi cat i on wi t h Dest i nat i on Net wor k i s
 Admi ni st r at i vel y Pr ohi bi t ed
 10 Communi cat i on wi t h Dest i nat i on Host i s
 Admi ni st r at i vel y Pr ohi bi t ed
 11 Dest i nat i on Net wor k Unr eachabl e f or Type of Ser vi ce
 12 Dest i nat i on Host Unr eachabl e f or Type of Ser vi ce
 13 Communi cat i on Admi ni st r at i vel y Pr ohi bi t ed [RFC1812]
 14 Host Pr ecedence Vi ol at i on [RFC1812]
 15 Pr ecedence cut of f i n ef f ect [RFC1812]

 4 Sour ce Quench [RFC792]
 Codes
 0 No Code
 5 Redi r ect [RFC792]
 Codes
 0 Redi r ect Dat agr am f or t he Net wor k (or subnet)
 1 Redi r ect Dat agr am f or t he Host
 2 Redi r ect Dat agr am f or t he Type of Ser vi ce and Net wor k
 3 Redi r ect Dat agr am f or t he Type of Ser vi ce and Host
 6 Al t er nat e Host Addr ess [JBP]
 Codes
 0 Al t er nat e Addr ess f or Host
 7 Unassi gned [JBP]
 8 Echo [RFC792]
 Codes
 0 No Code
 9 Rout er Adver t i sement [RFC1256]
 Codes
 0 No Code
 10 Rout er Sel ect i on [RFC1256]
 Codes
 0 No Code
 11 Ti me Exceeded [RFC792]
 Codes
 0 Ti me t o Li ve exceeded i n Tr ansi t
 1 Fr agment Reassembl y Ti me Exceeded
 12 Par amet er Pr obl em [RFC792]
 Codes
 0 Poi nt er i ndi cat es t he er r or
 1 Mi ssi ng a Requi r ed Opt i on [RFC1108]
 2 Bad Lengt h
 13 Ti mest amp [RFC792]
 Codes
 0 No Code

 25

 14 Ti mest amp Repl y [RFC792]
 Codes
 0 No Code
 15 I nf or mat i on Request [RFC792]
 Codes
 0 No Code
 16 I nf or mat i on Repl y [RFC792]
 Codes
 0 No Code
 17 Addr ess Mask Request [RFC950]
 Codes
 0 No Code
 18 Addr ess Mask Repl y [RFC950]
 Codes
 0 No Code
 19 Reser ved (f or Secur i t y) [Sol o]
 20- 29 Reser ved (f or Robust ness Exper i ment) [ZSu]
 30 Tr acer out e [RFC1393]
 31 Dat agr am Conver si on Er r or [RFC1475]
 32 Mobi l e Host Redi r ect [Davi d Johnson]
 33 I Pv6 Wher e- Ar e- You [Bi l l Si mpson]
 34 I Pv6 I - Am- Her e [Bi l l Si mpson]
 35 Mobi l e Regi st r at i on Request [Bi l l Si mpson]
 36 Mobi l e Regi st r at i on Repl y [Bi l l Si mpson]
 39 SKI P [Mar kson]
 40 Phot ur i s [Si mpson]

Code
0 Reser ved
1 unknown secur i t y par amet er s i ndex
2 val i d secur i t y par amet er s, but aut hent i cat i on f ai l ed
3 val i d secur i t y par amet er s, but decr ypt i on f ai l ed

 26

References

1. “Planet-Lab Homepage”, 2004 - http://www.planet-lab.org/

2. PlanetLab Team, “Scout Module API: Safe Raw Sockets”, 2004 - http://www.planet-
lab.org/raw_sockets/api.html

3. “PlanetLab Documentation: User’s Guide”, 2004 - http://www.planet-
lab.org/doc/UsersGuide.php

4. Chun, Brent N., “pssh”, November 2003 - http://www.theether.org/pssh/

5. Postel, J., "Internet Control Message Protocol", STD 5, RFC 792, USC/Information Sciences
Institute, September 1981. - http://www.faqs.org/rfcs/rfc792.html

6. Mogul, J., and J. Postel, "Internet Standard Subnetting Procedure", STD 5, RFC 950,
Stanford, USC/Information Sciences Institute, August 1985. -
http://www.faqs.org/rfcs/rfc950.html

7. Kent, S., "U.S. Department of Defense Security Options for the Internet Protocol", RFC 1108,
November 1991. - http://www.faqs.org/rfcs/rfc1108.html

8. Deering, S., Editor, "ICMP Router Discovery Messages", RFC 1256, Xerox PARC,
September 1991. - http://www.faqs.org/rfcs/rfc1256.html

9. Malkin, G., "Traceroute Using an IP Option", RFC 1393, Xylogics, Inc., January 1993. -
http://www.faqs.org/rfcs/rfc1393.html

10. Ullmann, R., "TP/IX: The Next Internet", RFC 1475, Process Software Corporation, June
1993. - http://www.faqs.org/rfcs/rfc1475.html

11. Baker, F., "Requirements for IP Version 4 Routers", RFC 1812, Cisco Systems, June 1995. -
http://www.faqs.org/rfcs/rfc1812.html

