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Abstract--In this investigation, the signal reflected by a target
to the step-frequency radar is processed using both non-
parametric and parametric approaches. An autoregressive
moving average (ARMA) model of the reflected signal is first
used to estimate the location of the targets. Then, an extended
Prony’s method is used to estimate the magnitude of the
reflection coefficients of the targets. These model-based
approaches are found to provide super resolution and
improvement in target characterization as compared to a
conventional non-parametric approach. Several simulations
are made to compare the performances of these methods.

INTRODUCTION

In recent years, step-frequency radars [1,2] have been used
frequently in estimating the location of the scattering targets,
such as ice-layer, subsurface targets, etc. An important
advantage in using step-frequency radar [1] is that the phase
change rate of the signal received at the radar, for the
preselected incremental steps of transmission frequency, is
directly proportional to the distance of the scatterer from the
radar. Frequently, non-parametric fast-Fourier-transform-(FFT)
based procedures are used [1] to estimate the location of the
scatterers from the complex reflected signal. It has been
shown [2] that the non-parametric approaches suffer from
inherent resolution constraints and a parametric modeling
approach, popularly known as the MUSIC [3] algorithm, is
found to provide super resolution in estimating target
locations. In this investigation, we use a high performance
ARMA [3,4] model to estimate the target locations with
super resolution. On estimating the target locations, we use
an extended frequency-domain Prony’s method (EFDPM [5])
to estimate the reflection coefficient of the target. The
backscattered signal received from targets is synthesized, and
the performance of the model-based approach is compared
with that of the conventional FFT-based approach.

DATA MODELING

Assume that the transmission frequency (f) of a step-
frequency radar is incrememted in discrete steps (n) of a
preselected frequency Af. Then, the signal at the receiver can
be expressed as [2]:

x(m = I T (m.exp-2fpd))+N@ (1)

where d, represents the distance of the k® target and D
represents the number of targets seen by the radar. Also, n
represents the n® frequency of transmission and B,=2r.n.Af/c.
I (n) represents the reflection coefficient of the k™ target at

the n® frequency of transmission, and N(n) represents samples
of white Gaussian noise. From the above expression it can be
seen that x(n) represents samples of a single (for D=1) or
multiple (for D>1) sinusoids. The rate of change of the
phases of these sinusoids are proportional to the distance of
the target from the radar. An inverse discrete Fourier
transform of the sequence x(n) can be defined as

M
y(m) =Y x(n).exp(jB,d,,) (2)

where M represents the total number of discrete frequencies
under consideration. The samples of y(m) will have a peak
{for D=1) or peaks (for D>1). From the location of a peak of
ly(m)l, the corresponding location of a target can be estimated
[1,2]. Once the location of the target is identified, the next
task is to estimate its reflection coefficient. Since in (1),
T.(n) is multiplied by a complex exponential term, the
inverse Fourier transform of x(n) will be the inverse Fourier
transform of I'y(n), shifted by the target distance dy. Thus, if
the samples of the Fourier transform of I',(n) can be isolated
for each target, a direct Fourier transform of these isolated
sequences will provide estimated values of the reflection
coefficient I (n) of the targetk.

In the first simulation, a single target is located at a
distance of 4 m(=d,), which possesses a linear reflection
coefficient shown in Fig.1. We assume that the radar operates
over the frequency range of 2-18 Ghz, and uses Af=10 MHz.
(These radar parameters are identical to the step-frequency radar
that will be used to acquire experimental data in the near
future.) Samples of x(n) are computed using.(1) for infinite
signal-to-noise ratios (SNR), and the samples of the ly(m)! are
computed using an FFT. The location of the target is
identified as 4.0031 m based on the peak location of ly(m)l.
Next, a Hanning window is set up around this peak location
and a total of five samples of y(m) are collected. The inverse
transform of these samples of y(m) provided the estimated
values of the reflection coefficient of the target. The rum.s
value of the estimation error, for infinite SNR, is shown in
Table I and the estimated values of I',(n) are plotted in Fig.1.

It is seen from Fig.1 that the windowing effect introduces
error in the estimated values of the reflection coefficient of the
target. It is always preferable to use as few samples as
possible around the peak location of y(m) since the error in
the estimated values of y(m) increases as we move away from
the peak location[3]. But, the fewer samples we use from
y(m), the larger will be the deformation in the estimated
values of I',( n). In order to overcome these difficulties of
non-parametric approaches, we use parametric model-based
approaches for estimating the target locations and their



reflection coefficients.

Since the samples of ly(m) basically provide the spectral
information of the samples of x(n), a model-based spectrum
estimation technique can be used to estimate the location of
the targets with a super resolution. In this investigation, we
use an ARMA-model-based approach [4] to estimate the
location of the targets with high accuracy. According to this
scheme, the samples of the random signal x(n) is modeled as
the output of an ARMA filter of order (p,q), excited by a zero-
mean white Gaussian noise sequence w(n) such that

) q
xm)= ) ak)x(n-k)+Y bkw-k)  (3)
k=1 k=1
where a(k) and b(k) represent the AR and MA coefficients of
the ARMA filter. For a pure AR process (b(0)=1 and bk)}=0
for k>0), the AR parameters can be estimated using a high-
performance approach[4], which estimates the order p by
performing the singular value decomposition (SVD) of an
extended order autocorrelation matrix (ACM). In this case, the
order p actually correspond to the number of targets present in
the field of view of the radar. The samples of ACM are
extracted from the samples of x(n) [4]. Using these AR
coefficients, the pole locations can be estimated as the roots
of the polynomial equation of the z-domain [3,4]
P
Yak)z™ =0 (4)
k=1

Since the poles of (4) define the sinusoidal components of
x(n) [2,3], an accurate estimation of the poles will actually
define the target locations accurately. Using this approach, the
target location is estimated as 3.9998 m, which is more
accurate than that obtained from the inverse-FFT- (IFFT-)

based approach (see Table I).

Next, a total of five samples of y(m) are selected around the
peak location estimated by the ARMA model. These samples
are then used by EFDPM to model the transformation of the
reflection coefficient of a target as a rational function model
(5] of order (u,v-here u+v+1=5 and s(v)=1). That is,

u

> r(k).m*
y(m)=5>— (5)
> s(k).m*

k=0
This rational function model is used to select the parameters
(k) and s(k) so that y’(m) can provide a suboptimal fit to the
samples of y(m) over the entire range of m. A direct Fourier
transform of this modeled data is used to estimate the samples
of I'y( n), and the result is shown in Fig.1. This scheme
provided an r.m.s error of 0.0052, which is less than the
0.1005 provided by the FFT-based approach.

The aforementioned procedures are repeated for SNRs of 40,
30, 20, 10 and 0 dB, and the results are tabulated in Table I. It
can be seen that as the SNR decreases, the r.m.s error in
estimating the reflection coefficient of the target increases for
both methods. The r.m.s emor provided by the extended
Prony’s method stays consistently lower than that of the
FFT-based approach.

SUPER RESOLUTION FOR MULTIPLE TARGETS

From Table I, it is seen that the target location estimated
by the FFT-based approach did not change at all throughout
the testing range of the SNRs. This is expected since we used
1600 samples for only one non-decaying sinusoid. However,
when multiple and closely spaced targets are present in the
radar’s field of view, the situation is found to be very
different.

In this section, we assume that the two targets are present
at distances 4.0 and 4.05 meters from the radar. Then, we
compare the performances of the ARMA-model-based
approach versus the FFT-based approach in estimating the
locations of the targets as the number samples (N) is
decreased. The results are presented in Table II, which shows
that the ARMA-model-based approach successfully resolves
the two targets when the FFT-based approach cannot resolve a
distance of 0.15 meters. Thus, the parametric modeling of the
radar return is found to be useful in achieving super resolution
as compared to the FFT-based approach.

ESTIMATION OF THE REFLECTION COEFFICIENTS
FOR MULTIPLE TARGETS

From Table II we find that the ARMA model can estimate
the target locations accurately, using only 100 samples of
x(n). To estimate the reflection coefficient, however, we
collected 1600 samples of x(n). This is done to make sure
that the neighboring target is not undesirably influencing the
five samples around each peak location of ly(m)l [2]. Next,
five samples are collected around the first peak location of the
inverse transformed domain, and the reflection coefficient of
the target is estimated using both the Hanning window and
the extended Prony’s method. The estimated values of the
reflection coefficient are shown in Fig. 2, and the r.m.s errors
associated the Hamming window and the extended Prony’s
method are found to be 0.1421 and 0.1143, respectively. In
the presence of additive noise, with an SNR of 0 dB, the
ran.s emors are 0.1496 and 0.1293. Thus, the extended
Prony’s method provided superior performance in
characterizing the target.

It is important to note that increasing window size actually
decreases the performance of the conventional approach in
estimating the samples I'.(n) due to the undesirable influence
from the neighboring target.

CONCLUDING REMARKS

In this investigation we show that an ARMA-model-based
technique provides super resolution in estimating the
locations of targets as compared to an FFT-based approach.
By knowing the locations of these targets, we can collect
more data to get enough samples inbetween the peaks of the
inverse transformed domain so that the entended Prony’s
method can be used to estimate the reflection coefficient of
the target. We find that the extended Prony’s method
estimates the values of the reflection coefficient with an
improved accuracy as compared to the results obtained by the
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Table I : Comparisons of the Estimated Values Between the FFT-based and the Model-based Approaches

FFT of the windowed data. Thus, a combination of the
ARMA-model-based approach and the extended Prony’s
method might be used effectively in estimating the location
of the targets and their reflection coefficients. We are in the
process of applying the model-based techniques to the
measured data for characterizing the ice type.
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SNR Estimated Target Location RM.S. Error in Estimating Reflection
indB (Actual Location = 4.0 m) Coefficient (using 5 samples)
IFFT-based (m) ARMA-model- FFT-based EFDPM-based
based (m)
oc 4.0031 3.9998 0.1005 0.0052
40 4.0031 3.9998 0.1130 0.0098
30 4.0031 4.0001 0.1176 0.0376
20 4.0031 4.0006 0.1176 0.0847
10 4.0031 3.9992 0.1268 0.0991
0 4.0031 3.9989 0.1308 0.1122

Table II: Error in Estimating Target Locations Using ARMA model (Targets are located at 4.0 m and 4.05 m)

No. of Samples Resolution Distances Estimated by ARMA | Errors in Distance Estimation (%)
used (N) From IFFT (m) model (m)
First Target Second Target First Target Second Target
1600 0.0094 3.9997 4.0503 0.01 0.01
800 0.0187 3.9984 4.0514 0.04 0.03
400 0.0375 3.9950 4.0553 0.13 0.13
200 0.0750 3.9868 4.0675 0.33 043
100 0.1500 3.9856 4.1757 0.36 3.10
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