
Performance Constraints of Distributed
Control Loops on Linux Systems

Andrew Boie and Dr. Douglas Niehaus

ITTC-FY2008-TR-41420-05

December  2007

Copyright © 2007:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7612
All rights reserved.

Project Sponsor:
Oak Ridge National Laboratory

Technical Report

The University of Kansas



Abstract 
The number of distributed applications that play important roles in industry, 

commerce, and daily life is steadily increasing. The execution behavior constraints that 
distributed applications must meet vary widely, but those of the important sub-class, the 
distributed control loops, are the focus of the work described in this report. Distributed 
control loops have two characteristics of particular interest: (1) components of the 
application communicate with each other across machine boundaries, and (2) the end-to-
end response time and other aspects of control loop behavior are subject to specified 
timing constraints. Distributed control loops have been implemented for decades, but 
generally using specialized computation platforms. Recent trends make supporting such 
control loops alongside other applications on low cost commercial off the shelf (COTS) 
platforms, particularly open source platforms, increasingly attractive. The viability of this 
approach depends crucially on which aspects of these low cost platforms constrain 
control loop performance, what the constraints are, and where in the system they are 
created. This report describes a number of experiments which explore the performance 
envelope of control loops on Linux using the increasingly popular RT-Patch, and which 
indicate areas of the system constraining the performance of control loops and thus 
limiting the set of distributed control loop applications which could successfully use this 
example target platform. 
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1 Introduction 
The number of distributed applications that play important roles in industry, 

commerce, and daily life is steadily increasing. The execution constraints of these 
distributed applications vary widely, ranging from simple constraints of adequate 
performance to prevent users from having to wait too long, to complex constraints on the 
timing of specific application behaviors affecting system profitability, in the case of 
business support or industrial automation systems, and even affecting issues of health and 
safety in the case of many control systems. Under current practice, the likelihood that 
specialized system software and application architectures are required increases with the 
stringency of the behavior constraints of the application, particularly with those affecting 
health, safety, and economic profitability. Such specialization is required to satisfy the 
required system behavioral constraints, but often comes at considerable cost. Specialized 
software architectures are required because those used for most commercial off the shelf 
(COTS) systems concentrate on optimizing the average case performance of generic 
applications. General purpose COTS systems make no effort to either represent or to 
satisfy the precise computational behavior constraints of many distributed applications.  

Distributed control loops of many forms with a wide range of behavioral constraints 
are an increasingly common class of applications which have execution behavior 
constraints specific to their application semantics. When the time scale of the behavioral 
constraints of the application is large enough, then conventional systems can generally 
satisfy them, although this can vary with other loads on the system. Developers of most 
of these applications would like to be able to use conventional systems, if possible. In 
many cases they have to use conventional systems due to economic constraints if the 
application cannot support the additional cost of specialized support. Precise 
measurement of application and system behavior under a variety of system loads is thus 
important to such developers in determining whether application behavior constraints are 
satisfied, and why any violations occur so they can be corrected.  Distributed control 
loops present a particularly difficult challenge, since behaviors that must be evaluated 
include those that cross machine boundaries, which in turn means that the 
synchronization of clocks on the various machines involved has a crucial influence on the 
accuracy of the behavioral evaluation.  

Evaluation of distributed control loops must be done realistically and must consider 
system behavior at both the application and system level. The reason for this is that 
unexpected relationships among system activities and control loop application behaviors 
must be detected and then resolved. One of the most difficult development scenarios is 
the intermittent fault that seems to occur randomly, or which only occurs under 
circumstances apparently unrelated to the fault.  For example, in August 2007 users 
began noticing an unexpected link between network performance of Microsoft's new 
Vista operating system and the apparently unrelated activity of playing music or 
video[13]. Interested parties quickly discovered that the source of this behavioral link 
was the semantics of the Vista Multimedia Class Scheduler (MMS) [14] which gives 
preference to multimedia applications in several ways, one of which places specific limits 
on network throughput. Under detailed examination it turned out that the MMS network 
throughput limits were expressed as specific values which were appropriate to 100 Mb/s 
networks, but which were far too small for 1 Gb/s networks. Thus, when users with an 
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active 1 Gb/s network connection began playing music or watching a video, throughput 
on their active network connection suddenly dropped.   

Distributed control loop applications are potentially sensitive to such unexpected 
interactions with applications competing for both CPU and network resources because 
such interactions may result in violating their behavioral constraints. When the time scale 
of the constraints is small enough, only specialized operating system and customized 
hardware support is sufficient. Between these two extremes lie distributed control loop 
applications whose ability to use standard operating system support or need to use 
expensive specialized systems is unclear until it can be accurately measured.  

Those applications with the most stringent constraints are likely to continue using 
costly specialized system software, in part because the cost of the system support is 
insignificant compared to other costs. However, an increasing range of distributed control 
loops would benefit greatly from being able to use less costly system support. Linux is 
increasingly popular for a variety of reasons, not the least of which is lower cost [1,2,3]. 
However, often equally or even more important is that as open source, all parts of the 
system are open to examination and modification as required to implement a given 
system. Use of open source also ensures that a given company will always have access to 
their chosen implementation platform which is not true of commercial platform offerings 
which may be changed or discontinued at the whim of their owners. 

For these and other reasons, Linux has long been of interest as a target platform for 
systems with real-time and other specialized behavioral constraints. At first this interest 
was limited, because Linux's ability to satisfy these constraints and the ability of 
developers to measure behavior to verify constraint satisfaction or diagnose violation 
were both limited. However, many interested parties developed a number of ways to 
improve both precise computation control [6,15,19,23,24] and performance evaluation 
[4,20,21,22].  Previous efforts at the University of Kansas considered synchronized and 
adaptive distributed computations which, although they did not explicitly implement 
control loop applications, provided relevant experience in pushing the performance limits 
of the Linux platform [17,18]. 

In the last two years, the Linux RT-Patch, managed by Ingo Molnar, has emerged as 
a focus for much of the system development addressing specialized application 
constraints [12]. As its name indicates, it is primarily motivated by real-time applications, 
but many of its features also improve the ability of Linux to permit precise computation 
control in service of other types of application constraints. One of the most important 
aspects of the RT-Patch is that it is well accepted as a testing ground for features 
migrating into the main line Linux kernel. Some of its simpler features have already 
made it into the mainline kernel [16], while others are scheduled for inclusion in future 
releases. Even those features not yet scheduled for migration into the main line kernel are 
enjoying increasing popularity, since many developers of real-time systems are perfectly 
willing to use the RT-Patch as their target platform. 

1.1 The Problem of Interest 
Applications involving control loops are an important class of applications which 

are sensitive to the timing of their behavior.  In many emerging control applications 
components of various control loops will be widely distributed. Developers creating 
applications containing distributed control loops are thus vitally interested in the ability to 
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precisely evaluate the behavior of their applications on a specific target system under a 
variety of conditions, as well as the ability to precisely control that behavior.  
 The study described in this report concentrates on the ability to evaluate specific 
instances of behavior as well as aggregate measures of longer-term behavior of 
distributed control loops. This is a vital form of support required by any developer of 
distributed control loops.  Many components of the system software within these 
distributed systems can affect and constrain the overall performance of the control loop 
applications. Thus, determining which aspects of the system software create such 
constraints, and, when possible, why they are created is fundamental to effective and 
efficient design and implementation of such distributed control loop applications. Delay 
constraints imposed by supporting computational and networking components are a 
crucial factor in correctness of distributed control. 

1.2 Our Approach 
We use Linux systems as a testbed both because Linux is a likely implementation 

platform and because we have source access to all components of the system, can 
instrument it for performance evaluation, and modify it to determine the effects of 
specific changes to default system behavior parameters. While Linux is a likely 
implementation platform for deployed control applications, nonetheless results of these 
experiments are strongly applicable to such applications implemented on proprietary 
platforms, as long as the behavioral semantics of the system components can be made to 
satisfy necessary constraints. 

For these experiments, we use a number of system software components developed 
over many years at the University of Kansas as well as two components developed 
elsewhere, in addition to the facilities available in a standard Fedora Core 7 or Ubuntu 
Linux distribution.  The components developed at the University of Kansas include: 
• KUSP: KU System Programming (KUSP) modifications to the Linux Kernel 

including (1) Data Stream Kernel Interface (DSKI) [4,20,22] and (2) the CLKSYNC 
modifications supporting high resolution clock synchronization across sets of 
machines. The CLKSYNC modifications to standard NTP [10] clock 
synchronization made many of the measurements of distributed control loops 
discussed in this report possible [8], since the lower resolution clock 
synchronization provided by the standard NTP software is not sufficient to evaluate 
individual packet transmission times. 

• DSUI: The user-level performance evaluation support of the Data Streams User 
Interface (DSUI), which together with DSKI provides integrated and detailed 
performance evaluation data across both the user-OS and system-system 
boundaries.  This is important in many cases because it aids in determining the 
location of performance constraining factors.  

• NETSPEC: The NETSPEC tool which permits automated control of configuration, 
execution and instrumentation for arbitrary distributed applications such as the 
distributed control experiments which are the subject of this report. The original 
version of NETSPEC was implemented solely in support of network performance 
evaluation [11]. Since then it has undergone considerable extension and, most 
recently, was reimplemented in Python as part of the work described here. At this 
point, NETSPEC is suitable for automated creation, control, and evaluation of 
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arbitrary distributed computations. These new capabilities were important in 
implementing and executing the distributed control loops efficiently, accurately, and 
reproducibly.  

• KUIM: The KU Image Processing (KUIM) software that was used to implement 
the distributed video control loop experiment discussed here. It was also used to 
implement the application  driving problem for another part of the project, and thus 
was a reasonable framework choice for  our example application. 
 Three significant components of these experiments developed elsewhere which 
are not part of a standard Linux distribution are: 

• NIST-Net: This software executes on an independent Linux router that introduces 
delays, packet drops or repetitions according to behavioral parameters specified as 
part of the experimental design. NIST-Net thus simulates a range of realistic effects 
on network communications supporting the control loop experiments and thus 
affecting the behavior of the control loop applications [5]. 

• ETTCP: An enhanced version of the venerable ttcp program which is used to 
provide network loads of specified characteristics under NETSPEC control in the 
experiments described here [7]. 

• RT-Patch for the Linux Kernel: Started and currently managed by Ingo Molnar, a 
core Linux Kernel developer working for Red Hat, the RT-Patch currently contains 
code contributed by a number of kernel developers [12]. The RT-Patch contains a 
number of components that are related in one way or another with improving the 
ability of Linux to be used for real-time applications. The major focus of this patch 
remains the reduction of Linux event response latency, which has an obvious 
influence on the suitability of the system for real-time applications such as the 
distributed control loops which are the focus of this report. Many modifications of 
Linux which were developed and tested as part of the RT-patch have already been 
incorporated into the mainline Linux kernel, and to our knowledge, all of the RT-
Patch features which are required by the work presented here are scheduled for 
inclusion in the mainline Linux kernel in the next few releases. 
Our investigation of distributed control loop performance and of the aspects of 

system support for them that constrain their performance involved the implementation of 
a number of experiments. The first two, ettcp and Stimulus-Response,  served in part as 
sanity checks for the various components of our system and application instrumentation 
as well as the post-processing analysis required to derive a common global time-line for 
events occurring on the various components supporting the distributed control loops. 
They also served as the context for calibration of the overheads and resolution of our 
measurement method. They continue to serve as part of our regression tests for the 
evaluation framework used in other tests. 

The Distributed Pipeline experiment is an abstract emulation of a set of 
communicating processes implementing a distributed application computation. Messages 
travel across process and machine boundaries until they reach the sink process. The 
components of the computation can be arbitrarily distributed across system boundaries. 
When the sink process is on the same machine as the source, this simulates a control 
loop. 

The Distributed Video Control loop is a video tracking application which involves 
capturing a stream of video frames from a camera, transmitting the video stream across a 
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network to an arbitrary set of processing nodes which analyze the contents and track 
objects, forwarding the video to a third display machine. The tracking components can 
also generate camera pan-tilt-zoom messages as required, to keep the object being 
tracked within the video frame, thus closing the control loop.  

The rest of the report discusses the tools we used to implement the experiments in 
Section 2, the design of the experiments in Section 3, the results of the experiments and 
their implications in Section 4, while conclusions and possible topics for future work is 
discussed in Section 5. 

2 Experiment Component Software 
The various software components are used to create executing application software 

that either implements a plausible control loop application directly, or strongly emulates 
the relevant computation and communication behaviors of such applications for 
performance evaluation purposes.   

We first describe the Datastream components that support the collection and 
analysis of performance data. We then describe the CLKSYNC improvements to clock 
synchronization necessary for effective evaluation of the distributed control loop 
applications.  We then briefly describe (1) the NETSPEC application helping automate 
the configuration, execution and instrumentation of the distributed application 
experiments, (2) the KUIM Image processing library used in the distributed video control 
loop experiment, and (3) the NIST-Net router used to simulate a variety of realistic 
network conditions. 

2.1 Datastreams 
Datastreams is a Linux kernel patch, user-level library, and related tools for 

collecting and analyzing performance data. Developers place instrumentation point 
macros within the kernel or user-level applications, and during execution a binary file 
containing the instrumentation data is written to the disk. The data within this binary file 
can be further analyzed, filtered, and transformed using the Datastreams Post-Processing 
software (DSPP). While the current version is a logical extension of the original [4], it 
has undergone considerable revision, rewrite, and extension over the years. The current 
version is considerably more powerful and useful than even a fairly recent version 
[20,22].  
 Datastreams (DS) has several points of similarity with the Linux Trace Toolkit 
(LTT) which is a popular way for developers to evaluate the performance of Linux 
systems [21].  We used Datastreams in the work described here for several reasons. First, 
and most compelling, is that LTT has no explicit support for collecting performance data 
from a set of distributed machines and constructing a global time line for events in post 
processing [8]. Second, in other respects, DS has significantly more flexible, powerful, 
and easy to use support for post-processing analysis of performance data collected. Third, 
DS support for collecting an integrated set of performance data from both user and 
system level is better than that of LTT. Finally, DS development began with that of 
KURT-Linux [19] and significantly predates that of LTT, so it was also the platform with 
which we had the most experience.  That said, LTT created many attractive features, 
some of which we have incorporated into DS, such as the use of the “relay” Linux 
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subsystem support for sharing buffers across the user-OS boundary which lowers the 
overhead of collecting performance data, and a method for instrumentation point creation 
that makes clever use of compiler and linker features to define an independent section for 
instrumentation point code, and which makes it possible to scan the executable of an 
instrumented program  or Linux kernel to determine the set of instrumentation points 
present.  The design and implementation of LTT and DS continue to converge in several 
ways, and a more complete combination of the two approaches is possible in the future. 
 The key point for the work presented here is that DS is an effective and efficient 
method for gathering the relevant performance data for the experiments determining 
control loop performance constraints. The LTT would not have supported construction of 
global time lines for distributed control loop events as readily as DS, but LTT and 
performance evaluation support for other platforms that might be targeted by distributed 
control loops could, in principle, support gathering of data required for the experiments 
described in this report.  

2.2 CLKSYNC 
In order to create global time lines of distributed experiments, we need a higher 

degree of clock synchronization than is provided by standard NTP with off-the-shelf 
networking hardware [10]. 

The NTP approach to clock synchronization uses a client-server architecture and 
assumes that the outbound and return portions of the round trip time for a synchronization 
message from the client to the server are equal. If the two delays are not equal, then 
synchronization is still possible, but proceeds slightly more slowly. The speed and 
accuracy with which the client clock is synchronized to that of the NTP server primarily 
depends on the variance of the round trip delay with the delay magnitude having a 
secondary influence. The standard NTP configuration for Linux on a local switched 100 
Mb/s Ethernet network provides clock synchronization of roughly 1 millisecond 
resolution. This is, unfortunately, not sufficient to create useful global time lines for 
evaluating distributed computations, since the round trip “ping” times among Linux 
machines on such a network is also roughly 1 millisecond.   

Our approach to improving clock synchronization depends on the crucial 
observation that, in standard NTP, the send/receive timestamps are collected at the user 
level, which means that OS-level processing time for the NTP packets on both the client 
and server adds endsystem based variance to that of the network. Our approach devised a 
system for writing timestamps to the NTP packet at the kernel level, as close to the 
Ethernet hardware as possible on both client and server, significantly reducing round trip 
time variance and thus significantly improving the accuracy of clock synchronization [8]. 
The modified NTP daemon and ntpdate programs use modified NTP data structures that 
are recognized by the NTP aware Ethernet driver modifications. The kernel code records 
the TSC (CPU time stamp counter) value whenever it sends or receives an NTP packet 
over the CLKSYNC Ethernet interface. These TSC values are converted into timestamps, 
which are much more accurate than the NTP timestamps with respect to when NTP 
packets arrive and leave. The work described here significantly revised and refined the 
original CLKSYNC approach [8], improving clock synchronization on a local Ethernet 
switch by roughly a factor of 40 to 10 microseconds under ideal conditions, and to no 
worse than 40 microseconds under heavy load, as discussed in Section 4. 
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2.3 NETSPEC Control Software 
Running distributed computations implementing distributed control loops, 

instrumenting the computations and the system to determine aspects of the system 
constraining performance, collecting all relevant data, and then processing the collected 
data to place all events on a common global time line and derive performance metrics 
from that representation is a complex implementation and computation task in and of 
itself. Running such experiments by hand often involves manual operations on several 
machines, while automating the execution of the experiment is often a  non-trivial ad hoc 
programming task in and of itself. Crucial, but often neglected aspects of the experiments 
described in this report are their implementation overhead, their execution overhead, and 
the reproducibility of their results.    

More specifically, there are a number of administrative and housekeeping tasks 
associated with running a distributed experiment, including: 

• Invoking processes on remote machines 

• Supplying each process with configuration information 

• Synchronizing phases of execution of sets of distributed processes 

• Troubleshooting any processes that fail to execute properly 

• Gathering any output files written by each process and performance data files 
written by the instrumentation framework for analysis 

Performing all of these duties by hand involves spawning a large number of 
terminal windows, activating the components of the experiment in a specific order, and 
manually copying all the data files back. Manual execution of such experiments is thus 
both time-consuming and error-prone. 

NETSPEC was created to address these issues by automating the execution of 
distributed experiments. The single NETSPEC configuration file defines each component 
of a distributed experiment and the set of parameters controlling the behavior of each 
component.  Each component of the experiment uses a common “phase” representation 
for their actions, and the NETSPEC configuration file includes a global schedule 
representation of the execution order for each type of experiment component, and of each 
component individually, if necessary. This approach decreases the implementation and 
execution effort required by computations, and increases the accuracy with which a given 
set of distributed computation actions and behaviors can be reproduced. Increased 
reproducibility and decreased effort in running an experiment are particularly important 
because designing and conducting distributed experiments, as well as interpreting their 
results is sufficiently complex that several iterations are almost always required. Further, 
the very nature of experimental investigations is that initial results of a given experiment 
or group of experiments almost always suggests additions or modifications to the 
experiment actions or the data gathered, requiring that the experiment be run again. 

A more subtle, but probably more important benefit of using NETSPEC, is that the 
configuration file explicitly and completely records how the experiments are conducted. 
This is often completely neglected in many projects, or is at best only partially preserved 
in the form of various shell scripts and other commands executed by hand. The 
combination of NETSPEC and Datastreams is particularly powerful because it 
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completely records, and largely automates, all aspects of experiment execution, 
performance data gathering, and performance data post-processing. Datastreams 
configuration files and in some cases active data gathering processes are included as part 
of the NETSPEC configuration file description of an experiment.  This fully specifies and 
automates experiment execution and associated data gathering. The combination of 
Datastream post-processing configuration files and the make utility serves to completely 
specify and largely automate the analysis of the experimental data. This is another part of 
many studies which is given inadequate attention. It is not unusual for a single graduate 
student to be the only person who knows how a given graph was produced, and even the 
person who produced a graph can forget how they did it after a few months. Thus, 
explicit automation of data analysis not only increases the overall efficiency of 
conducting distributed computation studies, but also increases the  reliability with which 
all aspects of the study's experimental and data analysis methods are recorded. 

2.4 KUIM Image Processing Software 
KUIM is a video processing library that we found reasonable for the construction of 

the video control loop experiment that was an important example control loop for the 
work described here. Using KUIM was also attractive because it was being used as the 
implementation platform for a closely related project addressing a video object tracking 
problem. It is a modular, multi-threaded framework for arranging various video 
computation threads in a graph structure, with threads exchanging video frames via 
shared queues. 

When we began work, KUIM could only implement video processing pipelines on 
single machines. We extended KUIM to allow for distributed video processing 
experiments by adding network send/receive threads, which read frames from a shared 
queue, transmit it over the LAN, and write frames to a shared queue on another machine. 
We instrumented these threads with DSUI so that we can measure machine-to-machine 
frame transmission intervals. 

2.5 NIST Net 
NIST Net is a network emulation package for Linux [5]. With a kernel module and 

set of control programs, a Linux machine can be configured as a router to simulate a 
variety of network conditions. NIST Net works at the IP (Internet Protocol) level, 
emulating end-to-end performance characteristics of wide-area networks. 

For our experiments, we configured a Linux machine as a router between two 
separate subnets, and installed the NIST Net software. We implemented a simple 
NETSPEC-aware application to set the NIST Net parameters for each experiment, 
simulating delays and dropped packets between machines. CLKSYNC runs on a separate 
LAN so that NIST Net does not affect the accuracy of clock synchronization. This is 
illustrated in Figure 3.4.1, in Section 3.4, which illustrates the video object tracking 
control loop experiment.   

2.6 Linux RT-Patch 
 The RT-Patch for Linux [12] has become the de facto integration and collection 
point for modifications to Linux addressing reduction of  preemption latency, improved 
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time keeping resolution and generalization of clock sources [16] various methods for 
integrating concurrency control and scheduling, and any other modifications of concern 
to those targeting Linux as a real-time platform. We based our current KURT-Linux and 
Datastreams framework on the RT-Patch for several reasons. First, it has incorporated 
implementations of time keeping and time sources that were partially derived from earlier 
KURT-Linux based work and which thus subsumed some of the previously existing 
KURT-Linux code. Some of these elements subsequently have made it into main line 
Linux in the form of high-resolution timers and some generalization of clock source 
representations[16]. Second, because as it gains acceptance and popularity, it is a likely 
target for control loop applications which benefit from lower latency and better system 
response to network packet arrival and other events. Third, because it is the current target 
of our KURT-Linux and Datastreams work, which was a readily available platform for 
experiment implementation. The additional work required to port Datastreams and other 
required support components to main line Linux did not appear to be an appropriate use 
of available resources.  
 The increased preemptability and increased precision of computation control 
results, in part, because of how the hard-IRQ and soft-IRQ OS-level computations are 
given thread context in the RT-Patch. In the vanilla Linux kernel, hard/soft IRQ OS 
computation component execution is controlled under hard-wired scheduling semantics 
that are separate from the application level thread scheduling. In the RT-Patch all IRQ 
components are mapped onto threads which are controlled by thread scheduling but are 
assigned to the RT scheduling class which takes precedence over normal threads, thus 
reproducing the main line Linux semantics, while creating the possibility of controlling 
the hard-IRQ and soft-IRQ threads under other scheduling semantics.  
 The RT-Patch thus makes control loop applications work somewhat better than 
under main line Linux, but we have not tried to evaluate the difference between RT-Patch 
and main line Linux based performance because the RT-Patch is a likely implementation 
target for most control loops with stringent performance behavior constraints, and 
because the added implementation effort require to use main line Linux did not seem an 
appropriate use of resources. 

2.7 Summary 
 The components described in Section 2, taken as a group, establish an environment 
within the distributed control loop experiments described in Section 3 can be 
implemented, executed efficiently and reproducibly, instrumented efficiently and 
precisely at both OS and user level, and for which performance data can be post-
processed to place events on a common global time line more accurately than other 
platforms can accomplish due to improved clock synchronization performance. The 
global time line can then be used by extensive and automated post-processing to analyze 
control loop behavior in a variety of ways that provide unusually detailed views of 
system and control loop behavior, and which provide an automated, efficient, and precise 
method for checking that control loop behavior does not violate specified behavioral 
constraints. Thus integration of existing capabilities, extension of these as required, plus 
the creation of new elements to establish this complete experimental platform is a non-
trivial achievement in and of itself, apart from its use to perform the distributed control 
loop experiments described in the rest of the report.   

 9



3 Design and Implementation of Control Loop Experiments 
We developed or enhanced four applications in order to test our frameworks and 

conduct our analysis of control loops. We name these experiments (1) ettcp, (2) stimulus-
response, (3) distributed pipeline, and (4) video control loop. Each of these experiments 
fulfills a specific set of functions in our overall experimental design, and are both 
numbered and presented in order of increasing complexity. 

3.1 ETTCP 
The ettcp program is an enhanced version of the well known UNIX ttcp tool. We 

added instrumentation points to ettcp at the user level as a way to correlate the user level 
events to those we placed in the Linux network stack, and thus as a way to test the basic 
sanity and correctness of our kernel-level network stack instrumentation.  The ettcp 
program has a feature to send random data over the network to another machine, with 
options for data rate and block size. We found this an excellent way to test our 
instrumentation of network performance with large amounts of data, as well as a way to 
introduce competing network load while running other experiments. 

3.2 Stimulus-Response Experiment 
This was the first control loop oriented experiment implemented and was used 

during the development of the CLKSYNC and Datastreams components of the 
experimental environment as a sanity check. It consists of a client and server program 
running on two different machines, as illustrated in Figure 3.2.1. The server listens for 
incoming network connections. When it receives one from the client, it obtains the local 
current time, logs an event, and sends it to the client machine. It then awaits an 
acknowledgment from the client. This process is repeated a user-configurable number of 
times. 

Figure 3.2.1:  Simple Stimulus-Response Experiment Structure 
 

Upon receiving the time from the server, the client machine obtains its own time. It 
then computes the difference between the two timestamps and logs it to an event and an 
aggregate histogram. The time stamp difference is also displayed to the screen, and an 
error message is printed if the difference is negative. 

After the test completes, a global time line is constructed using Datastreams post-
processing. The global time line can then be displayed, examined directly, and subjected 
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to automated analysis verifying that no contradictions or constraint violations are present. 
Among the most important analyses on data from this experiment are those ensuring that 
the TSC-to-nanosecond conversion mechanism and other aspects of the global time-line 
construction mechanism are working properly. 

3.3 Distributed Pipeline 
The next level of complexity for our experiments extended the stimulus-response 

experiment to span an arbitrary number of machines and generalizes the data exchanged 
among the processing nodes. The data_pipe application runs in one of three different 
modes: source, sink, and processing node, with one or more data_pipe instances running 
on each machine in the experiment. The source node sends a small message to the first 
processing node in the pipeline, which forwards it on to the next node, repeating the 
process until the circulating message is received by the sink node, which discards it. A 
user-configurable number of stimuli are sent over the through the pipeline. The end-to-
end response time, as well as the individual transmission intervals between each node are 
measured. Figure 3.3.1 illustrates a specific configuration of the Distributed Pipeline 
which distributes five processing nodes across four machines, with the source and sink 
processing nodes on the same machine.  

This is important for two reasons. First, it is a functional analog of a distributed 
control loop as the messages proceed out across the network and then return to the 
sending machine. The second is that the events records for the source and sink nodes are 
timestamped using the same clock, since they are on the same physical machine. This fact 
is helpful in evaluating the precision with which the global time line can be constructed, 
and events on various machines can be placed on it.   
 

 
Figure 3.3.1: Abstract Distributed Pipeline Configured as a Control Loop  

 
For example, we can compare the round-trip time for a message as evaluated using 

the raw send and receive timestamps produced by the common clock for the two events, 
and that produced by comparing the global times for the two events as mapped onto the 
common global time line. The experiment illustrated in Figure 3.3.1 is an abstraction of a 
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multi-machine pipeline and control loop; we run the source and sink programs on the 
same machine, measuring the interval between generating a message and receiving it 
back, as well as the intervals between sending and receiving each message at each user-
level node, and at each Ethernet interface on each machine. 

3.4 Video Control Loop 
The video control loop experiment, illustrated in Figure 3.4.1, evaluates the 

performance of a video tracking application executing a simple scenario. One machine, 
labeled “Video Machine” in the diagram,  is connected to a video camera. One KUIM 
thread captures video frames using the KUIM API, and then sends them through a KUIM 
queue to another thread executing the sending KUIM NET node, which connects though 
a socket to the receiving KUIM NET node on the video processing computer, labeled 
“Processing Machine” in the figure.  Note that video frames moving through the socket 
connection  between the two “KUIM NET”  nodes is directed at the network routing level 
through the “NIST-NET Router” computer. This is thus one of the network connections in 
the experiment subject to delay simulating a connection across a network with 
characteristics as specified by the NIST-Net parameters specified in the NETSPEC 
configuration file for the experiment.  

On the “Processing Machine” computer, the “KUIM Net” node receives the video 
frames, forwarding them through a KUIM Queue to the “Analyzer” node which tracks a 
specified object within the stream of video frames. The “Analyzer” node draws a box 
around the tracked object within each frame and sends the modified video frames through 
the “KUIM NET” connection to a “KUIM NET node on the ” “Display Machine”, which 
then sends the video frame to the X11 server process on the Display machine.  This 
completes the data flow for the video frames from the camera on the video computer, 
though the tracking computation on the processing computer, and then to display on the 
display node. 
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Figure 3.4.1: Object Tracking Video Processing Application 

 
On the “Processing Machine”, the KUIM “Analyzer” node also sends movement 

commands to the camera based on the location of the object within the video frame to the 
“libptz” process. The “analyzer” thread decides when the object is close enough to an 
edge of the current video frame to warrant sending some combination of pan. tilt, and 
zoom instructions to the “Motor Control” node on the “Video Machine” to bring the 
tracked object closer to the center of the video frame. This is the return segment of the 
control loop in this experiment, which thus involves six execution threads on two 
machines and  two network connections, both of which are subject to the network 
simulation delay parameters of the “NIST-Net” node, as illustrated in the diagram.  

The rest of this section summarizes the duties of each thread on each machine in the 
video tracking experiment. 

3.4.1 Video Capture Machine Threads 
The video capture machine is the origin and destination for the control loop, and is 

labeled “Video” in Figure 3.4.1. This loop begins with the thread capturing video frames, 
labeled “Capture” in Figure 3.4.1, and ends with the thread listening for pan-tilt-zoom 
instructions which sends the corresponding commands to the camera control port, labeled 
“Motor Control” in Figure 3.4.1. The threads on the video capture machine, supporting 
video capture and camera movement are: 

1. A KUIM Capture thread, which reads video frames from the camera and writes 
them to a shared queue 

2. A KUIM Network Server thread, which reads frames from the queue and either 
discards them (if no client is connected on the other side of the network) or writes 
them into the socket connected to the corresponding KUIM Network client thread 
on the Processing machine 
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3. The camera movement thread, labeled “Motor Control” in Figure 3.4.1, which runs 
the camserv program. This program listens for pan/tilt/zoom commands from the 
“libptz” thread on the “processing” machine which receives information from the 
object tracker about object location within the frame, and which decides if camera 
movement is required. 

 In addition, there are two threads supporting the experiment infrastructure. These 
are the “CLKSYNC” and “DSKI” threads which support clock synchronization and 
Datastreams performance data gathering, respectively. 

3.4.2 Processing Machine Threads 
The machine, labeled “Processing Machine”, in Figure 3.4.1, supports the object 

tracking and the pan, tilt, zoom calculations related to object tracking. The KUIM 
processing node labeled “analyzer” contains several threads that analyze the incoming 
video, send object position information to the “libptz” process, and forward the video 
data to the “Display”  machine in the video display pipeline.  The principle threads on the 
“Processing Machine” are: 

1. A KUIM Network Client thread, which reads video frames sent from the capture 
machine and writes them to the queue supplying the “analyzer” thread 

2. The “analyzer” thread(s), which performs object tracking analysis on video frames 
and determines where and when the camera should move 

3. The pan-tilt-zoom library, spawns worker threads upon receiving movement 
commands so they can be executed asynchronously 

4. A KUIM Network Server thread, which forwards the received video frames to the 
next computation node 

 In addition to these Video processing and camera control threads, the “Processing 
Machine” also supports the CLKSYNC and DSKI threads supporting clock 
synchronization and Datastreams data collection from the operating system level as 
illustrated in the figure. 

3.4.3 Video Display Machine Threads 
The “Display Machine” reads video frames from the network and displays them in 

an X11 window. Its threads are: 

1. A KUIM Network Client thread, which reads video frames sent from the capture 
machine and writes them to a shared queue 

2. A KUIM Display thread which reads video frames from the queue and displays 
them on the screen 

3. X11 server thread which is not part of the application as written, but which has a 
fundamental role in the execution of the desired computation, which is the display 
of video frames. As such when and how the X11 server runs has a significant 
influence on how well the application performs 

 In addition to these Video processing and camera control threads, the “Display 
Machine” also supports the CLKSYNC and DSKI threads supporting clock 
synchronization and Datastreams data collection from the operating system level as 
illustrated in the figure. 
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3.5 Performance Metrics and Experimental Parameters 
The first experiments we ran were designed to test the correctness of our clock 

synchronization, performance data gathering, and data post-processing. We then explored 
the performance of control loops using the Distributed Pipeline and Object Tracking 
Video Processing applications on otherwise idle machines and then in the presence of 
competing CPU and network loads to consider the influence of competing load on control 
loop performance. 

All the experimental scenarios were run on Pentium-class machines with two 
Ethernet adapters. One Ethernet adapter was connected to the LAN in our building, and 
only for clock synchronization messages and external SSH access. The second adapter 
was connected to a private LAN divided into two subnets, with a NIST-Net router 
between them. This network was used for the communication and data flow between the 
nodes in the distributed experiment. 

To simulate competing network load, we ran ettcp processes in the background, 
sending large amounts of data between two of the nodes in the experiment. Competing 
CPU load was created by compiling a Linux kernel in the background on one or more of 
the nodes, creating a good mix of CPU and disk I/O load. The specific machines with 
load applied vary with different experiments, and are described in Section 4. 

4 Experimental Results and Their Implications 
This section describes the results of the experiments described in Section 3, and 

their implications for control loop performance and aspects of the system constraining the 
performance. Section 4.1 first describes some observations that were both significant and  
features of more than one experiment. Section 4.2 describes the results of the Stimulus-
Response experiment, while Section 4.3 presents the results of the Distributed Pipeline 
experiments, and Section 4.4 describes the results of the Object tracking Video 
Processing experiments. Finally, Section 4.5 discusses implications of these results for 
control loops.   

4.1 Common Issues/Observations 
We observed some common characteristics of our experimental results that were 

notable enough to analyze in this section, before we consider each experiment 
individually. 

4.1.3  CLKSYNC Resolution 
The results of some of our experiments give a good illustration of what we believe 

are the measurement limits of our current methods. Figure 4.1.1 shows the Ethernet 
adapter to Ethernet adapter transmission time of IP datagrams, in the context of the 
distributed pipeline experiment. The Y-axis of this chart is at very fine resolution, with 
the IP datagram transmission intervals falling roughly in a 10 microsecond distribution 
around the median value of 40 microseconds. 
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Figure 4.1.1: Small IP Transmission Time  

 
Because these are small packets (only a few bytes) in a simple experiment with no 

other load, we believe that these intervals measured behavior of the underlying hardware, 
which we expect to show little variation. The CLKSYNC software applies corrections 
every 4 seconds, and the effect of these corrections is clearly seen in the graph. Some 
slight spikes are present, due in part to clock corrections not being applied simultaneously 
on the two communicating machines. 

We expect that in these otherwise unloaded systems using an isolated Ethernet switch that 
the message transmission time is essentially constant. From the graph we would expect 
that this transmission time is roughly 40 microseconds and that the majority of the 
variation of measured transmission times in Figure 4.1.1 is due to the resolution of the 
clock synchronization, which is thus roughly +/- 10 microseconds. This is consistent with 
the synchronization error data provided by the CLKSYNC tools, thus strongly indicating 
that clock synchronization on lightly loaded systems has a resolution of roughly 10 
microseconds. 

4.1.2  Unusual End-to-End Response Time and 'Gaps' in Video Throughput 
 One of the performance metrics measured in the distributed pipeline experiment is 
the end-to-end response time of the control loop measured at the application level. Figure 
4.1.2 shows an anomaly with the measured response time intervals, which we think is a 
result of three unidentified external influences. 
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Figure 4.1.2: End-to-End Response Time  

 
 We observed that the organization of the majority of the sample points into “lines” 
within the scatter plot o transmission times for individual packets indicates that there is, 
at any given moment, a most likely packet transmission time with comparatively few 
outliers. These well-defined “linear” subsets within the scatter plot are separated by an 
event approximately every 30 seconds. Within each subset the most likely packet 
transmission time is maximum at the beginning of the period, and decreases linearly to 
minimum over each period. This is what makes the scatter plot appear to be organized in 
a set of parallel lines. 
 We witnessed this phenomenon with every run of the experiment. Moving the 
experiment to another set of machines did not change the overall pattern of the results, 
although the period of each 'line' varied. The plots of message transmission times 
measured at the Ethernet interface level were essentially horizontal lines, indicating 
constant transmission time at the Ethernet interface level, so network conditions were not 
responsible for this effect. Instead, the observed phenomena are due to other activities of 
the endsystem which influence message transmission times measured at the application 
level. Candidate influences include decisions by the system thread scheduler, interrupt 
processing, and other OS-level computations such as soft-IRQs and tasklets that take 
precedence over thread scheduling.    
 We have tested a few hypotheses about the cause of these phenomena, but due to 
the large number of candidates, we have not yet developed evidence identifying specific 
causes. The evidence we currently have, however strongly indicates the existence of three 
independent outside influences: 

1. The first influence periodically causes the most likely packet transmission time 
increases to its maximum value. The period of the data shown in Figure 4.1.1 is 
roughly 30 seconds but this varied significantly with other experiments and for 
other runs of the same experiment. 

2. The second influence causes a linear decrease in the most likely packet 
transmission. This causes the scatter plot points within each period to be grouped in 
a line. 
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3. The third outside influence appears to cause a one time change in the operating 
region of the most likely packet transmission time at the application level. The 
transition changes the operating region from ~10-15ms  during the 0-100 seconds 
period of the experiment to ~15-20ms during the 100-500 seconds period of the 
experiment. At this transition point the previous maximum transmission time 
becomes the new minimum, and during the transition, two overlapping lines show 
on the scatter plot. It is important to note that this change of operating region does 
not appear to be instantaneous. In the graph shown, there were two most likely 
packet transmission time during the transition from the old operating region to the 
new operating region, with the transition occurring 100-120 seconds into the 
experiment.  

 While we considered the possibility that clock synchronization might be one of the 
causes of these phenomena, this is extremely unlikely for two reasons: (1) the start and 
end timestamps were taken on the same machine, and (2) the magnitude of these changes 
is at the millisecond level, while CLKSYNC modifications are made at the microsecond 
order of magnitude. 

We observed another periodic anomaly in message transmission times measured at 
the Ethernet interface when examining the results of the distributed video pipeline 
experiment. Figure 4.1.3 shows a scatter plot of the IP datagram transmission time 
intervals for video data sent from one machine to another. Roughly every 8 seconds there 
is a small gap in the graph, with a peak occurring immediately after it. Some periodic 
condition on either the sending machine, the receiving machine, or both is briefly 
increasing the packet transmission time and/or interrupting the transmission of data, 
resulting in empty regions in the transmission time scatter plot.  

 

 
Figure 4.1.3: Video IP Datagram Transmit Time  

 
 We have not yet identified specific endsystem activities or influences causing these 
observed anomalous behaviors. We believe that they are caused by periodic activity on 
the Linux machines, but since the periods are different, ~30 seconds for the distributed 
pipeline, and ~8 seconds for the video data transmission, we believe at this time that the 
observed behaviors are due to two different outside influences. We continue to refine the 
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performance data gathered and to refine our analysis in an effort to identify the source of 
this periodic changes in message transmission time probability, but we have not yet 
identified the aspects of endsystem behavior responsible because there are so many 
possible causes. 

4.2 Stimulus-Response 

4.2.1 CLKSYNC Offset/Frequency Adjustments 
We measured the clock offsets applied to each computer, along with any changes made to 
the estimated CPU frequency. Figure 4.2.1 shows these values for one machine, and 
similar graphs were generated for each computer involved in the distributed experiment. 
 

 
Figure 4.2.1: CLKSYNC Adjustments  

 
The individual points visualize each offset applied to the computer's clock, plotted 

on the left vertical axis. The lines show changes to the estimated CPU frequency used to 
convert TSC-based timestamps to nanoseconds, plotted on the right vertical axis. This 
shows regions of difference from the original estimated frequency. 

The frequency changes are a response to observations of offset values. At 
microsecond resolution the TSC is not completely stable. Even so, in general the 
frequency adjustments made were generally with +/- 1 from the original base frequency. 

4.2.2  Packet Transmission Times 
These graphs (Figures 4.2.2 and 4.2.3) show the user-level to user-level 

transmission times for one segment of the round trip, the server machine sending packets 
to client machine, of the stimulus-response experiment. The packets exchanged between 
machines were 48 bytes in length, and we measured each leg of round-trip performance. 
Note that the start and end timestamps are collected at the user level, which accounts for 
the greater variance in the results. 
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Figure 4.2.2: Server to Client Transmit Time  

 

 
Figure 4.2.3: Server to Client Transmit Histogram  

 
We observed that the average client-to-server transmission interval was roughly 

equal to the server-to-client interval (64.83 us and 67.44 us, respectively). This simple 
experiment is useful as a quick regression test to quickly verify the functioning of the 
CLKSYNC software, since unsynchronized clocks would show asymmetrical interval 
times for the two hops in the experiment. It also serves a a quick check on the post-
processing calculations constructing the global time line. 

This experiment is conducted using small packets under controlled conditions, with 
no competing network or CPU load, so that we can compare/contrast with more complex 
behavior of later experiments under load. 

4.3 Distributed Pipeline 
The structure of the distributed pipeline was discussed in Section 3.3 and illustrated in 
Figure 3.3.1. We configure the experiment so the source and sink nodes are on the same 
machine, thus taking the form of a control loop. 

4.3.1 IP Datagram Transmission Time 
Figure 4.3.1 was also shown as Figure 4.1.1 in Section 4.1 because it is an excellent 
example of both clock synchronization accuracy, as well as the minimum-cost message 
transmission overhead.  
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Figure 4.3.1: Small IP Datagram Transmit Time  

 
The messages are very small; each stimulus propagated through the pipeline 

consists of two packets. The first packet is a 4-byte size message, immediately followed 
by another packet with the message contents. In this experiment the message contents 
were 6 bytes. 

The start and end points of these IP datagrams were taken as close to the hardware 
as possible, and the average transmission time was 40 microseconds, with approximately 
+/-10 microsecond perturbation. We believe limits of clock synchronization precision is 
the major cause of the perturbation. 

4.3.2  End-to-End Response Time 

4.3.2.1  Repeating Parallel Lines 
 Figure 4.3.2 shows results from an instance of the distributed pipeline experiment 
on a different set of machines than Figure 4.1.2. Like the other graph, this scatter plot of 
end-to-end control loop response time shows unusual organization. We believe this is due 
to three as-yet unidentified aspects of system support, as discussed in Section 4.1, which 
strongly constrain the likely packet transmission times and vary regularly over long 
periods.  

 
Figure 4.3.2: End-to-end Response Time  
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4.3.2.2 Competing CPU Load 

We introduced competing CPU/IO load into the experiment by running a Linux 
kernel compile on the source/sink machine in the distributed pipeline. The disk interrupt 
processing load of this activity is just as important as the competition for CPU cycles. 

One important effect of the competing load is a reduced accuracy of clock 
synchronization. As shown in Figure 4.3.3, the offsets applied to the clock were larger 
than in the unloaded scenario, increasing the estimated clock error from 10 microseconds 
to about 20. There were also more frequent adjustments to the CPU frequency, within 
range of +/-2 of the starting frequency.  

 
Figure 4.3.3: CLKSYNC Adjustments Made  

 
In future work, we would like to place some or all of the clock synchronization 

software under explicit scheduler control to strongly isolate it from the competing load, 
which should make the clock synchronization accuracy much more independent of 
system CPU load. In addition, although we have tried to place the NTP time stamp 
collection as close to the hardware as possible, it appears that CPU scheduling may still 
play a role in the accuracy of clock synchronization we are able to obtain.  

 
Figure 4.3.4: IP Datagram Transmission  

  
The overall results were similar to the unloaded scenario, with the same unusual 

organization in the end-to-end control loop scatter plot. The only significant difference 
we observed was that the average packet transmission times to and from the loaded 
machine increased from 40us to 70us. 
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4.3.2.3 Competing Network Load 

For a competing network load scenario, we ran ettcp processes dumping large 
amounts of data between the third and fourth machines in the control loop. Unlike the 
competing CPU load scenario, clock synchronization was unaffected for the loaded 
machines.  

The effects on the end-to-end results were striking, with the average response time 
at 275ms, with a large variance around the average value (Figures 4.3.5 and 4.3.6). In 
addition, we observed a different pattern of unusual organization in the scatter plot. The 
end-to-end response time periods appear to be roughly quantized at 5ms intervals. This is 
an interesting effect, and we will continue to refine our instrumentation and analysis to 
determine its origins. 

 
Figure 4.3.5: End-to-end Response Time  

 
Figure 4.3.6: End-to-end Response Time  

 
 Examination of the individual node-to-node IP datagram transmission intervals 
showed that each leg of the trip through the pipeline had fairly consistent results, with a 
greater number of outliers to and from the machines under competing load being 
unsurprising. However, no quantization of the scale observed in the end-to-end data was 
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noted in the individual transmission intervals, which simply measure the networking 
hardware performance. This indicates that the quantization is associated with endsystem 
processing of the network flows, rather than effects of the network itself. That is also not 
surprising as the network in this case was a simple Ethernet switch. 

Therefore, we believe that the quantization is due to OS and user-level computation 
scheduling and is not a function of network performance. Future work will vary the 
amount of competing load so that we can discover how control loop performance varies 
with competing network load.  

4.4 Distributed Video Tracking 
 The design of the object tracking video processing control loop experiment was 
discussed in Section 3.4 and illustrated in Figure 3.4.1. The video frames flow from the 
camera to a tracking process which forwards modified frames to the display computer, 
and send camera movement commands back to the camera machine.  

4.4.1 IP Data Transmission Time 
The first set of measurements taken show the transmission of the IP datagrams 

carrying the captured video across the network. Of particular interest was the video data 
transmission intervals for frames sent from the capture machine to the tracker, which had 
the NIST-Net box between them to simulate network conditions creating larger packet 
delays than that of the local Ethernet switches used in other experiments.  

4.4.1.1 Initial Warm-Up Period of More Chaotic Behavior 
We noticed that in all runs of the distributed pipeline experiment that there was a 

period of chaotic activity at the beginning, which stabilized to more consistent behavior 
after a brief period. Figures 4.4.1 and 4.4.2 show two 60-second experiments; the former 
with no NIST-Net delay applied, and the latter with a 200ms delay.  

 
Figure 4.4.1: No NIST-Net Delay  
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Figure 4.4.2: 200ms NIST-Net Delay  

 
We ran a set of short experiments with NIST-Net delays ranging from 0 to 300ms. 

The initial burst of chaotic activity increases non-linearly with increased NIST-Net delay. 
The intervals are clumped together with greater delay between groups of packets, and 
greater variance of overall packet transmission time during this period. Spikes of greater 
delay were qualitatively more prevalent with data sent from the capture machine to the 
tracker, than the tracker to display machine interval. 

At the user-level, the system settles into more regular behavior after a warm-up 
period. From the camera to the tracker, Figure 4.4.3, video transmission was chaotic 
during the warm-up period, with many frames taking much longer to reach the tracker 
machine. From the tracker to the display machine, Figure 4.4.4, the video transmission 
time during the chaotic interval was mostly lower than the median transmission time in 
the steady state which was distinctly different than behavior between the camera and the 
processing machine during the same period.  

 
Figure 4.4.3: Frame Transmission Interval 1  
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Figure 4.4.4: Frame Transmission Interval 2  

 
We are not currently sure of the causes for this behavior, but we have some theories 

about possible causes, which could be evaluated by future experiments: 
 The NIST-Net router simulating network delay could be creating this behavior 
 TCP Slow-Start or other protocol starting delays 
 Packet buffering at various points in the data flow 

 It is possible that such warm-up periods would also affect distributed control loops. 
If so, they can be designed to accommodate this behavior by sending network traffic 
before beginning real execution. 

4.4.1.2 Regular Bands of Inactivity 

Once data flow reaches a steady state, we observed periodic gaps in the graphs 
which correspond to delivery of few or perhaps no packets, and increased delay as 
evidenced by outliers contemporaneous with the gaps. We previously discussed this 
phenomenon in Section 4.1 by showing the effects on the kernel IP Datagram 
transmission time graph, and this behavior is also noticeable on the user-to-user video 
frame transmission graph. (Figures 4.4.3 and 4.4.4) The gaps are periodic with the period 
being on the order of 10 seconds, but the specific period varying with experimental 
conditions. 

For our experiments, we were most interested in the steady-state behavior of the 
control loop. Control loops tend to run for long periods of time, and writing control 
software to send messages to 'warm up' the network connection or otherwise adapt to the 
existence of a warm-up period should be simple for most applications. For our analysis of 
longer experiments we trimmed off the first 30 seconds of the experiment so that our 
results reflect steady-state behavior. 

4.4.2 Aggregate Performance Data 
 We conducted multiple runs of the distributed video experiment with different 
NIST-Net parameters. Each experiment ran for 20 minutes, and we wanted to observe the 
performance implications of increased network packet delay between the video capture 
machine and the tracker. 
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4.4.2.1 Aggregate IP-Level Delay 

 Figure 4.4.5 shows the mean and standard deviation of the IP datagrams sent from 
the capture machine to the tracker, as a function of NIST-Net delay. Regardless of the 
NIST-Net parameters set, the variance of hardware-to-hardware delay remained the same, 
and was relatively small (~ 5ms) as expected, since the measurement points were not not 
subject to endsystem interaction effects. The average delay was a linear function of the 
NIST-Net delay setting.  

 
Figure 4.4.5: Aggregate IP-Level Delay  

4.4.2.2 Aggregate User-Level Video Frame delay 
 The results for the user-level video frame transmission intervals, Figure 4.4.6, were 
similar. The average delay was a linear function of NIST-Net delay setting, with a higher 
magnitude than the IP level graph, due to influence of added overhead of the network 
stack, application thread scheduling, and any other endsystem interactions. The variance 
was relatively uniform but significantly larger than the kernel level interval data. This 
follows from three main sources: (1) packet fragmentation and reassembly since the 
variance of the frame will reflect the combined effects for each packet into which the 
video frame is decomposed, (2) hardware interrupt, soft-IRQ, and application thread 
scheduling delays, and (3) the smaller number of sample points, since any given video 
frame is decomposed into ~50 individual IP datagrams.  
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Figure 4.4.6: Aggregate Frame Transmit Time 

4.4.2.3 Aggregate Control Loop Delay 
The full control loop measures the time a video frame is captured, until the camera 

receives a movement command based on a tracking decision involving that video frame. 
This is basically the sum of three intervals: the video frame transmission interval from the 
capture machine to the tracker, the processing time for that frame on the tracker, and the 
transmission interval of the camera control message from the tracker machine back to the 
capture computer. 

The camera control messages are short (< 128 bytes) strings; packet 
assembly/disassembly occurs in video stream, but not for the control messages back to 
the camera machine. 

Both average delay and variance (Figure 4.4.7) were increasing functions of the 
NIST Net delay. In this case, two NIST-Net segments are contributing to the total round-
trip delay, since the camera control messages are also delayed, as illustrated in Figure 
3.4.1. The delay parameter at the NIST-Net level is constant, not a distribution, and 
should thus not increase the variance. 

 
Figure 4.4.7: Aggregate Control Loop  
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 However, the increase of the variance is clearly super-linear, and the shape of the 
curve suggests a quadratic function of delay rather than linear. 

4.4.3 Competing Loads 
More interesting than the unloaded scenario is the performance of the control loop 

when competing network and CPU loads are applied to various stages of the control loop. 
Like the distributed pipeline experiment, we used background kernel compiles and ettcp 
to create conditions including competing CPU load, disk I/O interrupt processing and 
network traffic. 

4.4.3.1 Competing CPU/Disk Load 
We created a mix of CPU and I/O load by compiling a Linux Kernel in the 

background on the video capture machine. Our first observation was that, similar to our 
other experiments, the accuracy of our clock synchronization was degraded. Although the 
CLKSYNC messages were transmitted on a separate network from the experimental 
network traffic, we believe that interrupt and soft-IRQ packet processing on reception 
caused greater uncertainty in the clock correction offsets. In this case, the offsets applied 
ranged from -15 to +20 microseconds (Figure 4.4.8), rather than +/- 10 microseconds for 
the unloaded experiments. 

 
Figure 4.4.8: Clock Synchronization  

 
However, despite the degradation in clock synchronization, the overall results of the 

experiment were about the same. We have a few theories about why this is the case: 

 Disk I/O interrupts are of lower priority than network interrupts on the Linux kernel 
with the RT-Patch we are using, which would mean that network processing is 
isolated from the competing disk load 

 Since the kernel compile is a mix of CPU and disk operations, the video capture 
program CPU use can apparently fit into gaps left without noticeably degrading 
video performance 

 The main line Linux scheduler attempts to classify processes on its own according 
to their pattern of computational activity into interactive and batch classes, with 
interactive processes given preference. It is possible, though not verified, that the 
video processing CPU use pattern is classified as interactive and thus given 
precedence over the kernel compilation. 
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4.4.3.2 Competing Network Load 

 The clock synchronization accuracy on machines with competing network load was 
similar to the competing CPU case, with the variance of applied correction offsets 
roughly doubled from the unloaded case. 
 User-level measurements of video frame transmission time (Figure 4.4.9) from the 
video machine to the tracking machine show that in the presence of competing network 
load, the average transmission time roughly doubles to 107ms, with outliers ranging all 
the way to 1273ms. A nontrivial number of these appeared to occur periodically at about 
1100ms, with the rest of the outliers being more random.  

 
Figure 4.4.9: Video Transmission Time 

 
 For IP datagram transmission (Figures 4.4.10 and 4.4.11), the observed performance 
envelope of 0-10ms was roughly double from unloaded experiments, with significant 
gaps between clusters of transmission intervals. The user-level performance was much 
worse, with degraded performance of video frame transmission at the user level due to 
contention over network device, video frame reassembly, scheduling, and other end-
system effects rather than the network itself. 
 The difference between packet and frame measurement is disassembly/reassembly 
of video frames into IP datagrams and vice versa. We estimate the video frames are split 
up into roughly 50 IP packets. The ratio of the IP datagram transmission average and 
video frame transmission average is useful to determine the relative magnitude of two 
effects: reassembly of packets into a video frame, and scheduling effects of network 
receive and other application thread-level activities. 

 
Figure 4.4.10: IP Datagram Transmission  
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Figure 4.4.11: IP Datagram Transmission  

 

4.5 Implications for Control Loops 
 This section has described the results of the Stimulus-Response, Distributed 
Pipeline, and Object Tracking Video Processing experiments. In discussing these we 
described the fairly normal ways in which characteristics of the network and endsystem 
processing create constraints on control loop performance. At the most general level this 
shows that Linux, particularly with the RT-Patch applied, and similar systems can support 
control loops with moderate performance requirements subject to some accommodation 
by the control loop software. We also described some more puzzling behaviors worthy of 
our continued inquiry. This section summarizes our observations and discusses some 
implications of our results that we believe deserve consideration by anyone implementing 
distributed control loops.   
 While aggregate behavior is good, some endsystem interactions clearly exist which 
produce periodic or intermittent instances of behavior that diverge significantly from the 
average case. Several implications of this are considered in greater detail later in this 
section. Clock synchronization, at finer resolution than the default behavior of the default 
standard application NTP provides, is vital for evaluation of all control loops and for the 
proper functioning of many. The work described in this report demonstrates a simple 
method, albeit one requiring minor modification of the Linux Ethernet Driver code, for 
improving clock synchronization enough to permit control loop evaluation. The topic of 
clock synchronization is also considered in greater detail later in this section.  
 The presence of competing network load has a significant influence on on both 
clock synchronization and on the performance of message passing used directly by the 
control loop. This is unsurprising, but highlights that one of several approaches is 
required where general computation activities generating significant competing network 
load are present: 

1. Modify target platform to isolate network use from competitive users with less 
stringent behavior constraints. In other words, some form of QoS for network 
services used by distributed control loops.  Previous work using Group Scheduling 
[6, 15] to precisely control OS level network stack packet processing computations 
in combination with modifications to the network transmit and receive soft-IRQ 
code to permit scheduling the execution of processing for packets associated with 
specific sockets [25, 26]. 
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2. Isolate the network used for clock synchronization and control loop traffic. If the 
volume of traffic is low enough, this may be sufficient. However, recall that in 
Section 4.3, and illustrated in Figure 4.3.3, competing CPU load had an effect on 
clock synchronization accuracy. Since network packet processing is also a CPU 
load, this secondary effect could be important if network load on the “general 
purpose” network is high enough. In that case some form of scheduling isolation or 
precise scheduling of the clock synchronization and control loop computations 
might be required. The RT-Patch assignment of OS level computation components 
to threads helps with this, and Group Scheduling and network QoS [25, 26] show 
that improved support of this type is possible. 

3. Segregate the system design to achieve isolation of control loop and clock 
synchronization from other more general computing activities generating the 
competing network load. While economic forces clearly favor the smallest number 
of computers to do the largest number of jobs, in specific cases  the additional cost 
of segregation may be preferable to that of providing QoS aware networking or 
precise computation control of specific applications and the OS-level computations 
associated with the target applications. 

 The rest of this section discusses the implications of clock synchronization and the 
periodic effects and behavioral variations resulting from endsystem interactions for 
control loops in greater detail. 

4.5.1 Clock Synchronization 
 In many distributed control loops, clock synchronization across machine boundaries 
will be an important factor. If stages of a distributed control loop need to know the 
message delay between stages, need to verify that delay is no greater than some specific 
value, or need to coordinate actions taken by components  on different machines, then the 
performance of the clock synchronization available can become a limiting factor. While 
other clock distribution or synchronization methods with finer resolution exist, NTP is the 
most popular cross-platform solution and requires no specialized hardware support. 
 Our experience with clock synchronization for measurement purposes shows that 
standard NTP synchronization, on the order of 1ms, is not sufficient to quantify 
messaging delay among machines on local networks. For distributed control loop 
evaluation purposes, we had to take measures to improve this in order to adequately 
quantify the message delays between machines. 
 We were able to reduce the synchronization error from 1ms to a range between 10us 
and 40us, depending on operating conditions. This enabled us to quantify the observed 
message transmission times on a scale of tens or hundreds of microseconds with 
moderate accuracy. Since control loops also often depend on time-stamped events, clock 
synchronization constraints are also relevant for their design. 

4.5.2 Periodic Behavioral Variation Effects  

 The distributed pipeline experiment is, in our opinion, more representative of 
common control loops than the video control loop due to the size of the messages being 
exchanged. The outside influences causing the repeated pattern in the scatter plots of 
message transmission times at the application level, see Figure  4.3.1 in Section 4.3, are 
of concern in general, and especially because we do not yet know the causes. Since the 
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magnitude of the changes in behavior is fairly small, about 5ms, there will be many 
distributed control loops for which this variation is below thresholds of concern. 
However, identifying and eliminating these sources of behavioral changes would clearly 
permit distributed control loops with more stringent behavioral constraints to also be 
supported. 
 It is important to note that all of these experiments use only the main line Linux 
scheduling methods with minor RT-Patch modifications to specify the control loop 
behavior. Other, more precise scheduling methods exist, and could reduce some of the 
observed periodic effects on packet transmission time. However, exploring these would 
be outside the scope of this study which concentrated on factors affecting control loop 
performance in standard Linux. We did use the RT-Linux patch, which is arguably not 
standard, but we considered it the most likely target for Linux-based control loop 
software. 
 The warm-up period observed in the distributed video experiment, if not solely an 
artifact of using the NIST-Net delay router, is clearly a factor which the control software 
would have to handle. However, this should be easy to do for many applications. 
 More problematic are the periodic delays observed in the video pipeline 
experiment, because this represents a constraining factor on the dependable message 
delivery time constraints of the control loop.  The worst-case response time of the control 
loop would either have to include the occurrence of these higher-magnitude delays, or the 
control loop would have to permit using a synthesized value, perhaps averaged or 
projected from the previous N sample points. As long as these intermittent periods of 
aberrant behavior did too many sample periods, many control algorithms would be 
perfectly happy.  However, it would clearly be better if such periods of different behavior 
did not exist, because the control loop computations could be simpler and the worst-case 
period of the control loop would be smaller. 
 The evidence indicates that the major, if not sole, causes of these periodic changes 
in behavior are interaction of the control loop computations with other endsystem 
activities. We continue to refine our experiments and instrumentation to investigate our 
hypotheses about these activities and we hope to be able to control or eliminate their 
interference.  
 Future experiments extending this work would include attempting to use the Linux 
RT priority scheduling class to improve performance of control loops. More specialized 
control approaches, such as Group Scheduling [6,15] permit control of both user-level 
control loop threads and associated OS-level Hard-IRQ and Soft-IRQ network processing 
threads.  Whether such specialized and precise methods will be relevant depend on the 
nature of the sources for the periodic behavior variation. 

5 Conclusions and Future Work 
This document has presented the work we have done in developing a system 

framework for evaluating the performance of distributed control loops. One of the most 
significant challenges in making this evaluation possible was the need to improve the 
resolution of clock synchronization provided by generic NTP by a factor of roughly 40 to 
make the evaluation of distributed control loops possible. The clock values on various 
machines were then used to timestamp event records gathered using the Datastreams 
instrumentation methods, and post-processing analysis of several kinds was described 
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which placed endsystem events on a global time line, and which were then used to 
evaluate the performance of specific distributed control loops in several ways. We created 
methods for automatically and reproducibly executing distributed computations used as 
example control loop applications. These and other supporting methods and tools were 
discussed in Section 2. Section 3 discussed the experiment design and implementation 
including the Stimulus-Response, Distributed Pipeline, and Object tracking Video 
Processing application computations.  

Section 4 discussed the results of our experiment, which revealed a number of 
interesting factors constraining the performance of distributed control loops and having 
important implications for their implementation. The results revealed that Linux with the 
RT-Patch is an excellent target platform for distributed control loop applications with 
moderate computation behavior constraints, but that there are some endsystem 
interactions of interest. These endsystem interactions constrain the performance of the 
distributed control loop applications and produce periodic behavioral variation effects 
which could be handled by some distributed control loop applications, but which would 
have to be eliminated for others to use th target platform. However, it is also likely that 
previously investigated methods for precise computation control and for integrated 
scheduling of application-level computations with the OS-level computation components 
supporting them could eliminate many or all of these periodic behavioral variations. 
Other methods of isolation and control are possible, and all are applicable to other 
platforms than Linux, although Linux with the RT-Patch is an increasingly popular target 
platform for distributed control loop and other applications requiring some form of real-
time or other precise computation control support.  

As with any project involving development and experimentation, there are a 
number of interesting topics for future work. The Datastreams framework for gathering 
and analyzing performance data is at a highly evolved and stable state.  It provides 
excellent support for performance evaluation of application-level, OS-level, and 
distributed application behavior. Future work in this area will involve increasingly 
sophisticated used of run-time filters to decrease instrumentation overhead, increase run-
time use of performance data and increase the dynamic adaptability of the performance 
data gathering. In the post-processing area we steadily increase the set of available filters 
and analyses, and for some types of analysis generalized support for distributing data 
analysis pipelines across several machines would be desirable. Other tools, such as 
CLKSYNC and the latest implementation of NETSPEC are at earlier stages of 
development and would benefit from more basic improvements. Such desirable 
improvements in the current set of tools and methods include: 
• Modify the CLKSYNC tools to use their own communication protocol, 

rather than as a modification of NTP. 
• Add Datastreams instrumentation to the NIST Net package, in order to 

distinguish real network delays from OS-level scheduling on the router 
machine. 

• Further refine the NETSPEC communication protocol, and improve 
both the error handling and the user interface of the ns_control 
application. 

• Devise an instrumentation and analysis method capable of associating 
individual IP datagrams with their respective video frames in the video 
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object tracking experiment. 
• Use Group Scheduling on the endsystem  to see if integrated and 

precise control of the  experimental applications' user and OS level 
components would improved performance. Similarly, it would be good 
to see if such precise control could be used to increase the isolation of 
control loop component performance from the disruptive influence of 
other endsystem activities. 

• Introduce a distributed version of the Group Scheduling framework, 
and investigate whether fine-grained scheduling control across machine 
boundaries will improve performance beyond improvements provided 
by integrating control of user and OS computation components within 
and endsystem. 

• Expand the video pipeline experiment to include additional cameras, 
more sophisticated tracking, and additional computation nodes. 
The work described here demonstrated that distributed control loop type 

computations could be implemented and their behavior evaluated in detail. The methods 
and tools demonstrated, extended and in some cases developed provide an effective 
platform for a wide variety of related distributed application development and evaluation. 
We intend to continue some of the work described here and to use and extend the 
methods and tools discussed in this report in support of other projects in the future.  
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7 Appendices 
Appendices A, B, and C provide a modest amount of additional and more detailed 

information about the Datastreams, CLKSYNC, and NETSPEC methods and tools. The 
information in the appendices was at a finer level of detail than was appropriate for the 
main sections of the report, but are provided because it may be of interest to readers who 
wish to learn a little more about the implementation details of components of the 
experiments discussed in this report.     

A. Datastreams 
Datastreams is a Linux kernel patch, user-level library, and set of related tools for 

collecting and analyzing performance data. Developers place instrumentation point 
macros within the kernel or user-level applications, and during execution a binary file 
containing the instrumentation data is written to the disk. The data within this binary file 
can be further analyzed, filtered, and transformed using the post-processing software. 

A.1 Entity Types 
When an instrumentation point is encountered, the performance data written to the 

output file is called an entity. There are four different types of entities, outlined below. In 
addition, the macro definitions of some of the more commonly used instrumentation are 
shown. 

A.1.1 Events 
Events are the simplest entity type, which indicates that some named event occurred 

at a specific time. All events may have a long integer tag value saved with it, and 
optionally a sized chunk of extra data. 

DSTRM_EVENT(<group name>, <entity name>, <tag_value>) 
DSTRM_EVENT_DATA(<group name>, <entity name>, <tag value>, <size>, <data 
pointer>, <decoder function name>) 

A.1.2 Intervals 
Intervals represent an elapsed time, with macros for start and end points. The start 

point notes the time it was called, and the end point logs the elapsed time to the data 
stream. As with events, intervals can be tagged with an integer value. 

DSTRM_INTERVAL_START(<group name>, <entity name>) 
DSTRM_INTERVAL_END(<group name>, <entity name>, <tag value) 

A.1.3 Counters 
Maintains a value that is incremented each time the counter's instrumentation point 

is executed. The counter total can be logged at any time, and it can be reset to zero. 
Counters have significantly less logging overhead than events. 

DSTRM_COUNTER_ADD(<group name>, <entity name>, <amount>) 
DSTRM_COUNTER_LOG(<group name>, <entity name>) 
DSTRM_COUNTER_RESET(<group name>, <entity name>) 
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A.1.4 Histograms 

Histograms keep a data structure that can be used to generate a graphical display of 
tabulated frequencies. The histogram is parameterized with a range and a number of 
'buckets' representing intervals of input data. Histogram instrumentation points increment 
the appropriate bucket based on the given value, and can be logged to the data stream or 
reset at any time. Histograms can also be constructed in post-processing from other entity 
types, and can be sent to GNUPlot to be rendered graphically. 

DSTRM_HISTOGRAM_ADD(<group name>, <entity name>, <amount>) 
DSTRM_HISTOGRAM_LOG(<group name>, <entity name>) 
DSTRM_HISTOGRAM_RESET(<group name>, <entity name>) 

A.2 Entity Namespace 
All the entities within an application have metadata associated with them. There is a 

two-level hierarchy of names--group name and entity name. This allows for performing 
operations on groups of entities, which is convenient for enabling/disabling them at 
runtime, and also for various levels of analysis during post-processing. Entities also may 
have a description as well as entity-specific metadata. For example, events that log extra 
data will give a string that names a Python function that can unpack the binary extra data 
during post-processing. 

For performance reasons, it is inefficient to log these strings every time an 
instrumentation point is encountered. Instead, at the beginning of any output file a set of 
namespace data is produced, which declares the names of all the instrumentation points 
within the application, their metadata, and a unique id. Subsequent entities are logged 
only by this id, making the entity data structure very small, reducing instrumentation 
overhead. 

Both DSKI and DSUI use special binary text sections, GCC attributes, and linker 
operations to automatically extract the namespace information from the compiled 
application itself. Other languages may not support this; in this case special namespace 
files must be created. 

A.3 Data Stream Management 
By default, no entities are logged in the kernel or application when it is running. To 

log data, a data stream must be created. A data stream is associated with a set of buffers, 
an output file to write data to, and some other parameters. Any data stream has a set of 
entities associated with it. Initially this set is empty; the user can ‘turn on’ entities for that 
data stream through configuration options. Any time an instrumentation point is 
encountered during execution, the corresponding entity is logged to all data streams that 
have that entity enabled. 

Two fundamental data stream types are implemented: normal and ring buffer. 
Normal data streams send entities to the output file as they receive them. Ring buffer data 
streams accumulate entities in a circular ring buffer until a triggering condition is met. 
Once the trigger condition is satisfied, all the buffered entities are written out. This is 
useful for logging instrumentation data that generates a large volume of entities, but is 
only interesting under certain conditions. The ring buffer data stream will show a history 
of all the entities leading up to that condition.  
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All non-event entities have state information, such as a counter’s current count or 
the contents of a histogram’s buckets. This state information is kept at the data stream 
level. Functions exist which allow the user to write out the current state of a counter or 
histogram at any time. State information is not logged when a counter or histogram has 
data added to it, for performance reasons. 

A.4 Datastreams Kernel Interface 
Datastreams Kernel Interface is a tool for gathering performance data from a 

running Linux kernel. It uses the RelayFS subsystem to efficiently buffer and write 
events to the disk. 

A.4.1 DSKI Daemon 
The DSKI Daemon is the user-level interface to DSKI. It communicates with the 

DSKI kernel module, and allows the user to create data streams, enable entities, and 
capture instrumentation data. It is implemented in Python. 

A.5 Datastreams User Interface 
The goal of Datastreams User Interface (DSUI) is to make instrumentation of user-

level programs easy to do, with minimal impact on performance. Any program or library 
that uses DSUI will need to generate a header and code file. 

A.5.1 Header File Generation 
All DSUI instrumentation points are macros that define data structures in a special 

text section, and also call the appropriate functions within DSUI. Any given application 
may be linked to one or more libraries that also use DSUI; in order for these text sections 
not to overwrite each other, these text sections must have unique names, on a per-
application or per-library basis.   

The generated header file has all the macro definitions for DSUI instrumentation 
points. The associated data structures for these instrumentation points is placed in the text 
section, the name of which is provided on the command line when the header is 
generated. 

For some languages or architectures, the automatic declaration of namespace 
information via text sections is not possible. In this case, a separate namespace file must 
be maintained declaring the names and other metadata for all active instrumentation 
points. From this namespace file a header can be generated which explicitly declares all 
the instrumentation point data structures, and a constructor function to register them with 
DSUI. The difference is that this header must be regenerated every time the namespace 
changes. 

A.6 Datastreams Post-Processing (DSPP) 
The Python-based post-processing software (DSPP) is used to transform, merge, 

filter, and create graphical representations of data gathered from DSUI/DSKI, showing 
the performance of computations within a given experiment. 

DSPP also handles the details of merging data from multiple applications into a 
single time line. Using the timekeeping information logged by the synchronize program, 
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it will convert the CPU TSC-based timestamps into a global time line based on 
nanoseconds. Events that log extra data will have this data unpacked from binary form 
into more general-purpose Python data structures. 

A.6.1 Configuration Files 
DSPP is designed as a directed graph arrangement of individual filters, which are 

fed a stream of entities and operate on one entity at a time. Linear chains of filters are 
grouped into pipelines for efficiency reasons. Pipelines are themselves connected to an 
arbitrary number of other pipelines via shared queues. The configuration file syntax 
allows for specification of an arbitrary graph of filters, the only constraint being that the 
graph must be acyclic. 

A.6.2 Filters 

DSPP is designed to be easily extensible to meet the needs of any kind of 
performance evaluation. A base Filter class is defined, which defines methods for 
initialization, processing of a single entity, and cleanup/tear down tasks. DSPP comes 
with a rich set of general-purpose filters grouped into modules, and the DSPP 
configuration file syntax allows for custom, experiment-specific filter modules to be 
imported. 

A.6.3 Output Formats 
Currently, DSPP supports saving the results of post-processing in a pickle (the 

Python data structure serialization) format, which stores a complete record of all data 
logged. An XML-based file format is also planned but implementation is not complete. 
When finished, this XML format will allow an easy way for third-party applications to 
read and write DSPP data. 

Various filters exist to output data in other, more human readable formats. These 
include graphing filters, which output visual representations of data using GNUPLOT, 
and a narration filter that shows a human-readable log of an experiment, useful for 
troubleshooting both experiment design and filter specifications. 

B CLKSYNC Kernel Patch 
Anytime do_irq() is called for the IRQ of the CLKSYNC network device, a 

timestamp is recorded. The packet is then examined in the network soft-IRQ. If the 
packet is a CLKSYNC NTP packet, the arrival time stamp is written to the packet in one 
of the extra fields. 

For outgoing packets, a check is performed right before the packet is written to the 
hardware buffers. If the packet is a CLKSYNC NTP packet, a time stamp for packet 
departure is written to the packet in an extra field. 

The synchronize program is the end user’s interface to CLKSYNC. It is a command 
line tool that takes the remote timeserver as its argument. It periodically exchanges 
timekeeping messages with the remote server, and adjusts the clock and estimated CPU 
frequency as necessary. Every time an adjustment is made to the computer’s clock, a 
DSUI timekeeping event is logged with the current time and TSC-to-nanosecond 
correspondence. The binary DSUI output file created by Synchronize must be merged 

 41



with any other DSUI/DSKI data created on that machine. DSPP will convert the TSC-
based timestamps to nanoseconds on the global time line. 

C. NETSPEC Control Software 
There are a lot of administrative and housekeeping tasks associated with running a 

distributed experiment. These include: 

• Invoking processes on remote machines 

• Supplying each process with configuration information 

• Troubleshooting any processes that fail to execute properly 

• Gathering any output files written by each process so that they can be analyzed 

Doing this by hand involves spawning a large number of terminal windows, 
activating the components of the experiment in a specific order, and manually copying all 
the data files back.  

NETSPEC was written to automate the execution of distributed experiments. All the 
parameters for the components of a distributed experiment are written to a single 
configuration file. By doing this, it is trivial to reproduce existing experiments, and it also 
makes adjusting parameters and re-running an experiment very easy, improving the 
efficiency of running experiments significantly. 

C.1 Phased Execution Model 
NETSPEC specifies experiments as a list of phases, with each phase corresponding 

to a stage in the overall experiment. This provides a form of barrier synchronization; 
NETSPEC will not move on to the next phase until all the tasks in the current phase have 
completed successfully. Any NETSPEC-aware application provides function pointers for 
each stage that it supports. 

For example, consider a simple client-server experiment running on two machines. 
The phases for this experiment might look like: 

 Launch all applications across the cluster and perform initialization tasks 
 Launch the synchronize program (part of CLKSYNC) on each machine, and adjust 

the estimated CPU frequency in the kernel until the NTP offsets gathered are below 
a certain threshold 

 Send a command to the DSKI daemons running on each machine to begin logging 
data 

 Have the server process open up a socket and begin listening for network 
connections 

 Have the client process connect to the server and begin transmitting data 
 Wait for the client and server processes to report that they have finished the 

distributed computation. Collect all data gathered and send it to the host machine 
running the NETSPEC controller for later analysis. 

C.2 LibNETSPEC 
LibNETSPEC is a library that is used by all NETSPEC-aware applications. Upon 

startup the application registers function pointers corresponding to each of the phases it 
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has. It then transfers control to a function within the library that handles the 
communication details between the application and the NETSPEC controller. 

The LibNETSPEC API is simple and designed to make migrating existing software 
to use the NETSPEC model as painless as possible.  

C.3 NETSPEC Controller 
The NETSPEC controller program, ns_control, is the user interface to a distributed 

experiment. It reads the provided experiment configuration files, and communicates with 
netspecd processes running on each machine in the cluster. For each phase of the 
experiment it sends the necessary configuration data to each node, and collects log files 
of each program’s execution, as well as any data files generated. 

ns_control is designed to make troubleshooting easy. If any of the components of a 
distributed experiment fail, ns_control will detect it and display that program’s output up 
to when it failed. It manages the currently running processes for an experiment and can 
reset each machine to an initial state. 

Currently, ns_control is a command line interface and the code is somewhat proof-
of-concept. Further revisions will introduce a graphical user interface and more advanced 
error handling. 
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