
A Genetic Algorithm-Based Controller for
Decentralized Multi-Agent Robotic Systems

Proceedings of The 1996 IEEE International Conference on Evolutionary Computation (ICEC’96), Nagoya, Japan,
May 1996, 431-436.

 George A. Bekey

Computer Science Department
University of Southern California
Los Angeles, CA 90089, U.S.A.

bekey@robotics.usc.edu

Arvin Agah

Bio-Robotics Division
Mechanical Engineering Laboratory, AIST-MITI

1-2 Namiki, Tsukuba 305, JAPAN
agah@melcy.mel.go.jp

Abstract -- In this paper the results of evolution on the task
performance of a robot colony are discussed. The cognitive
architecture of individual robots of a colony are modified, using
genetic algorithms, producing a generation of robots with
superior task performance, compared with those of the initial
robot population. The effects of mutation probability and fitness
scaling parameters on simulated evolution are also studied in this
paper.

I. INTRODUCTION

In this paper the effect of evolution on task performance
of a robot colony is studied. The cognitive architecture of a
group of robots that perform specific tasks in an environment
is evolved by using genetic algorithms, hence producing a
better generation of robots in each successive generation. The
results reported in this paper are based on a colony of
simulated robots in a virtual world.

The cognitive architecture of a robot must enable it to
sense and act upon the world. The novel architecture used in
this paper, termedTropism System Cognitive Architecture, is
based on the tropisms of the robot, i.e., its likes and dislikes.
Such an architecture transforms the robot’s sensing of the
world to appropriate actions, thus enabling it to survive and
function in an uncertain world. The architecture uses the
concepts of positive and negative tropism. An agent’s likes
and dislikes will form its perceptions and, therefore will result
in its actions in the tropism architecture (Agah, 1994; Agah
and Bekey 1995). The concept of positive and negative
tropisms as principal mechanisms of intelligent creatures was
first discussed in (Walter, 1953).

A few examples of related research include: evolutionary
robotics (Cliffet al., 1993), ant-like robots (Deneubourget al.,
1991), cellular robotic system (Kawauchiet al., 1992),
evolutionary multi-agent robot system (Shibata and Fukuda,
1993), cellular robotic system (Ueyamaet al., 1992), and
simulated evolution (Wilson, 1988).

II. TROPISM SYSTEM CONTROLLER

After the robot senses the world, the tropisms that match
the current perception of the world are selected. A mechanism
is then used to select one tropism among the matched tropism,
as described later in this section. The selected tropism is then
used to produce an action by the robot. The tropism system of
the robot can be automatically updated through two processes,
namely, learning and evolution. Learning allows individual
robots to automatically update their tropism system and can be
classified as ontogenetic learning. Evolution enables the robot
to learn through simulated Darwinian evolution and can be
classified as phylogenetic learning.

Entities in the world include robots, predators, obstacles,
a home base and various objects to be used. Each robot is
capable of sensing the type and state (e.g.,active or inactive)
of other entities. In each tropism, an entity and the state of that
entity are associated with an action by the robot, and the
associated tropism value. The larger the magnitude of the
tropism value, the more likely it is for the robot to perform the
action. Once a robot performs a sensory sweep of its
surroundings (available sensory area), the set of the tropism
elements are checked for any matching entity and entity state.
For all the matched cases, the selected action and the
corresponding tropism value are marked. The selection of one
action from the chosen set is done by the use of a biased
roulette wheel. Each potential action is allocated a section on
the wheel, proportional to the associated tropism value.
Consequently, a random selection is made on the roulette
wheel, determining the robot’s action, i.e., the selection based
on the wheel results in the action that is to be performed by the
robot.

III. GENETIC ALGORITHM-BASED

CONTROLLER

The automatic updating of the tropism system
architecture can be achieved through the evolution of the

system. Using genetic algorithms (Goldberg, 1989), a colony
of robots can be evolved for a number of generations,
improving the performance of the colony. The techniques are
inspired by the processes of natural selection. Techniques of
fitness determination, selection, cross-over, reproduction, and
mutation are applied to the robot and the robot’s chromosomal
representation.

At the end of each generation, the parent robots are
selected based on a fitness computation. The higher the fitness
of the robot, the more likely it is for the robot to be selected.
After the two parent robots are selected, each is represented by
a chromosomal string. The two strings are combined, using a
cross-over point. The two new chromosomes are subjected to
potential mutation, and are then converted back to their
equivalent robot representation. The selected parents are then
replaced in the colony by the two robot offsprings. It is
expected that such mechanism of natural selection will
eventually result in a population with a higher performance.
The first generation (initial population) can be either set
randomly, or set to predetermined values.

III.A. Robot Selection

The selection of the robots for reproduction is based on
their performance. The selection process is based on a biased
roulette wheel selection. The portion of the wheel assigned to
a robot is proportional to the robot’s performance. The
selection of the roulette wheel gives preference to larger
portions, as they are more likely to be chosen. The fitness of a
robot is determined based on the number of tasks it performs
and its energy consumption. Enumerating the types of task
performed, and denoting the counts of the number of each type
of tasks performed by the robot with , and denoting its

energy consumption with , the overall performance can be

measured. The multipliers will be used to assign different

weights (strengths) to the different types of tasks. The energy
multiplier of will also be used to assign a weight to the

energy consumption of the robots. The computation of the
total performance can be done using two different methods.
The first method will be based on the energy per unit task
performed, using the multipliers of the task count and the
energy consumptions. A larger multiplier implies a higher
weight being placed on a certain type of task performance or
the energy consumption:

(1)

In this method of fitness computation, the lower numbers
signify robots that are more fit. Using the second method of
computation, the overall fitness of a robot is measured by
adding the inverse of energy consumption to the performance:

(2)

The larger numbers in this method signify robots that are more
fit. As the energy consumption increases, the fitness
decreases.

The fitness function used in the genetic algorithms is
scaled during the determination of the most fit parent robots.
The fitness scaling is needed in order to prevent a few very fit
individual robots from initially taking over a significant
proportion of the population, preventing formations and
explorations of new characteristics. The other problem is
associated with the later stages of the evolution where the
population average fitness and the population best fitness are
too close to one another. In both such cases the quality of the
population does not improve at its best. Linear scaling of the
fitness values can help alleviate these problems:

(3)

The coefficients of scaling and are computed at each
generation, using the minimum, maximum, and average
fitness values before the scaling.

III.B. Robot Representation

The tropism system architecture can be converted to its
equivalent in the form of a string representing the robot’s
chromosomes. The chromosome string consists of symbols of
0 and 1. Representation of the tropism elements is done in four
steps: (1) The set of all entities, states, and actions are
enumerated, and the number representing them is used in the
tropism element. (2) The numbers are converted into the
binary format (base two), and then converted to the equivalent
string format. (3) The strings representing the parts of the
tropism element (entity, state, action, and tropism value) are
appended to produce one string for each tropism element. (4)
The strings representing tropism elements are appended to
form the complete chromosome of the tropism system. For
example, the entity that is enumerated as entity 11 is converted
into the binary number 1011, which is then converted into the
string “1011”, and appended to the remaining strings.

The size of a section of the chromosome, representing
one tropism element, can be computed using the set of all
entities , the set of all states, and the set of all actions.
The cardinality of a set (number of members) is denoted by

. The cardinalities of the entity, state, and action sets are
assumed to be powers of two:

(4)

Since the tropism elements can be enumerated with a
predefined sequence of entities and actions, the chromosome
could be simplified to include only the action and the tropism
value:

pi

e

λi

λe

Φ1

λe()e

λi() pi
i

∑
----------------------=

Φ2
1

λe()e
------------- λi() pi

i
∑+=

Φ' aΦ b+=

a b

E S A

…

E()2log S()2log+ +

A()2log τmax()
2

log+

(5)

The total length of the robot chromosome, representing the
tropism cognitive architecture system is then computed:

(6)

The conversion of a string to the equivalent tropism
system is the reverse of the above process. The chromosome
string is first decomposed into sections of predetermined size,
representing the tropism elements and the sections of the
elements. The decomposed strings are then converted into
binary numbers, which are in turn converted into decimal
numbers. The resulting numbers represent the enumeration of
the set members for entities, states, and actions. The tropism
elements are then recovered from the chromosomal string,
resulting in the cognitive architecture of the robots in the
colony.

An example is presented here to further describe the
process of generation of a chromosomal string from a robot’s
tropism system. A portion of a robot’s tropism system is
included in Table 1. As described earlier, the sets of entities,
states and actions can be enumerated, therefore eliminating the
need for including those values in the chromosome. The
chromosomal string is then composed only of the
concatenation of the tropism values in a predetermined order.

Table 1: Sample tropism elements.

 The tropism values are concatenated:
(7)

The values are converted into binary substrings:
(8)

And finally the substrings are combined into one string.
(9)

III.C. Robot Combination

The two chromosomes representing the selected robots
(parents) must be combined to determine the chromosomes of
the two resulting robots (offsprings). The combination of the
chromosomes is accomplished by first selecting a cross-over
point. This is a location within the chromosomal string that is
used as a dividing point for the combination process. The
second sections of the two chromosomes are exchanged to
form the resulting chromosomes.

The cross-over operation takes place, given a certain
probability. If the cross-over does not happen, the original

chromosomes are copied into the next generation. The next
step in the production of new chromosomes for the offspring
robots is mutation. Mutation takes place using a certain
probability, where a randomly selected bit in the string will be
changed from a 0 to a 1, or from a 1 to a 0. Mutation allows
the colony to test new robots, not resulting from the cross-over
operation. The probability of mutation (usually less than 0.1)
is generally much lower than that of cross-over (usually
greater than 0.5). The values of mutation probability and
cross-over probability used in the experiments were
determined based on earlier experiments. The cross-over and
the mutation could result in portions of the chromosomal
string that are considered invalid, once converted to the robot
cognitive architecture. Such resulting invalid tropism elements
in the tropism system will be unusable and remain as such
until the next generation of the colony.

IV. ROBOT EVOLUTION EXPERIMENTS

This section addresses a number of issues: in which ways
does simulated evolution affect the performance of the robot
colony? And what are the effects of mutation probability on
colony performance? And what are the effects of the fitness
scaling parameter on colony performance? Different types of
experiments were performed while genetic algorithms were
utilized to evolve a colony of robots. The first two classes of
experiments involved the evolution of colonies for performing
gathering and attacking tasks. In these experiments a colony
with the population of 80 was evolved for 60 generations. The
other classes of experiments concerned the effects of the
parameters of mutation probability, and the fitness scaling
parameter on colony performance. The world resources
(objects and predators) were replenished at the end of each
generation. The gathering experiments included 1000 small
objects, and the attacking experiments included 100 predators.
The initial tropism system parameters were set randomly, and
the experiment parameters were set according to Table 2,
based on the values obtained in the previous experiments.

IV.A. Performance Analysis

The plots for the experiments in gathering and attacking
are included in Figures 1 and 2, respectively. In the gathering
experiments, the gathering count increased at each generation
and eventually leveled off, as all the resources were
consumed. After approximately 40 generations, the maximum
performance was reached via evolution. The energy
consumption of the colony generations decreased as the
consequence of evolution, also leveling off at about 40
generations. The same held for the energy per gather.
Evolution did create a better colony, reaching its best
performance (most efficient) after about 40 generations. The
attacking experiments produced similar results, though the

Entity
Type

Entity
State

Action
Tropism

Value

10 0 4 33

11 1 6 195

3 2 7 476

A()2log τmax()
2

log+

E S A()2log τmax()
2

log+()

33 195 476, ,()

000010000100110000110111011100, ,()

000010000100110000110111011100

performance reached its peak at about 20 generations, where
all predators were attacked. It is evident that the genetic
algorithm produced superior colonies of robots. The number
of generations required, before the maximum efficiency and
performance was reached, was dependent on the availability
of the resources for the given tasks. The attacking experiments
required fewer generations to reach the maximum
performance than the gathering experiments, because of the
higher availability of the small objects, compared to the
predators.

Figure 1: Performance (gathering) of generations.

Table 2: Parameters for the experiments.

Figure 2: Performance (attacking) of generations.

The effects of the mutation probability on the colony
performance were studied in a set of experiments. The
mutation probability, was varied from 0.00 to 0.10 in
increments of 0.01. The task performance count (gathered
objects), the energy consumption, and the energy per unit
gathered are plotted in Figure 3. The experiments were
conducted for 40 generations. The colony’s performance
decreased with larger values of the mutation probability. High
probability of mutation does not allow for stable performance
improvement of the generations. Low values such as 0.01
seemed to be good choices for this parameter. Figure 4
includes the plots for the experiments varying the fitness
scaling parameter from 1.1 to 2.0 in increments of 0.1. The
performance count increases as the parameter increases, and
the energy consumption decreases. The performance measures
are the best for the value of 2.0.

Parameter Value

Cross-over Probability 0.7

Mutation Probability 0.01

Fitness Scaling Parameter 1.5

Fitness Function Multiplier 100

Figure 3: Mutation probability and performance.

Figure 4: Fitness scaling and performance.

V. CONCLUSION

In order to illustrate the changes to the colony due to the
evolution, one robot was randomly selected from generation 1
and one robot was selected from generation 30. The colony
population was set to 80 in the experiments. The parameter
settings were cross-over probability of 0.4, mutation
probability of 0.01, fitness scaling multiplier of 1.5, and
fitness function multiplier of 100. The tropism system of the
robot at generation 1 (randomly set) and at generation 30
(after evolution) are shown in Table 3. As shown, since the
experiments included only gathering tasks, the evolved colony
members had a higher tropism value for gathering, than the
initial population members had. The tropism value for moving
in a new direction was decreased, as a robot consumes less
energy when continuing in the original direction, instead of
changing and moving in a new direction. The tropism values
for the cases that the populations did not encounter decreased,
such as helping a robot in the need of help, i.e., the tropism
elements dealing with non-occurring events. The chromosome
representations of these two tropism systems are contained in
Table 4.

It was shown that simulation evolution through the use of
genetic algorithms could indeed be used to evolve a colony of
robots with superior task performance, compared with the
initial colony.

Table 3: Tropism system of a robot.

Entity
Type

Entity
State

Robot
Action

Tropism
Value

(Gen. 1)

Tropism
Value

(Gen. 30)

None None No Action 0 0

None None Move In
Original
Direction

643 826

Space Inactive Move In
New
Direction

629 23

Small
Object

Inactive Gather 634 913

None None Place 752 107

Large
Object

Inactive Decompose 270 769

Dual
Object

Inactive Call For
Help

35 734

Predator Active Attack 284 608

Robot In Need
Of Help

Help 452 68

Table 4: Robot representations.

REFERENCES

[1] Agah, A. Sociorobotics: Learning for Coordination in
Robot Colonies. Ph.D. Dissertation, Computer Science
Department, University of Southern California, Los
Angeles, California, (1994).

[2] Agah, A. and Bekey, G. A. Autonomous Mobile Robot
Teams. In Proceedings of the AIAA/NASA Conference on
Intelligent Robots in Field, Factory, Service, and Space,
Houston, Texas, Vol. 1: 246-251, (1994).

[3] Cliff, D., Harvey, I., and Husbands, P. Explorations in
evolutionary robotics. Adaptive Behavior, 2: 73-110,
(1993).

[4] Deneubourg, J. L., Goss, S., Franks, N., Sendova-Franks,
A., Detrain, C., and Chretien, L. The dynamics of
collective sorting robot-like ants and ant-like robots. In
Meyer, J.-A. and Wilson, S. W. (Eds.) From Animals to
Animats. MIT Press, Cambridge, Massachusetts, 356-
363, (1991).

[5] Goldberg, D. E. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-Wesley
Publishing Company, Inc., Reading, Massachusetts,
(1989).

[6] Kawauchi, Y., Inaba, M., and Fukuda, T. A strategy of
self-organization for cellular robotic system (CEBOT). In
Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, 1558-1565, (1992).

[7] Shibata, T. and Fukuda, T. Coordinative behavior in
evolutionary multi-agent robot system. In Proceedings of
the IEEE/RSJ International Conference on Intelligent
Robots and Systems, 448-453, (1993).

[8] Ueyama, T., Fukuda, T., and Arai, F. Structure
configuration using genetic algorithm for cellular robotic
system. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, 1542-
1549, (1992).

[9] Walter, W. G. The Living Brain. W. W. Norton &
Company, Inc., New York, (1953).

[10] Wilson, S. W. The genetic algorithm and simulated
evolution. In Langton, C. (Ed.) Artificial Life, SFI Studies
in the Sciences of Complexity. Addison-Wesley
Publishing Company, Redwood City, California, 157-
165, (1988).

Pre-Evolution Post-Evolution

 0000000000
 1010000011
 1001110101
 1001111010
 1011110000
 0100001110
 0000100011
 0100011100
 0111000100
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000

 0000000000
 1100111010
 0000010111
 1110010001
 0001101011
 1100000001
 1011011110
 1001100000
 0001000100
 0100000010
 0001000010
 0000000001
 0000111000
 0100100000
 0000000000
 0100100000

